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ABSTRACT. In the present paper the oscillatory properties of the solutions of the equation

[(La)()™ + J [ K(tsa(s))ds =0
t
are investigated where n>1, L is an operator of the difference type, I; CR, K:Dg —R,
Dy C RS, z:[ag,00] = R. Under natural conditions imposed on L,I, and K it is proved that for n
even all ultimately nonzero solutions oscillate and for n odd they either oscillate or tend to zero as

t — oo.
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1. INTRODUCTION.

In the last 20 years, the oscillatory and asymptotic theory of functional differential equations
marked a rapid development. This development, in particular, is due to the fact that by means of
such equations many phenomena and processes in the field of natural sciences and technology are
simulated. Among the functional differential equations, the equations of neutral type occupy a
particular place in relation to the circumstance that, on the one hand, they have a considerably
more complex structure and, on the other hand, many of their properties have no analogous with
the other functional differential equations. This explains, to a certain extent, the small amount of
work dedicated to the investigation of the asymptotic and oscillatory properties of the solutions of
functional differential equations of neutral type. (Norkin [1], Myshkis, et. al. [2,3,4], and Zahariev
and Bainov [5,6]).

In [2] (see also [4]) a general method for the proof of the oscillatory properties of the solutions
of functional differential equations of the neutral type was suggested. In particular, this method
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was applied to equations of the type
(n) t+T
[a(t + ) + Az(t)™ + [ K(t,5,2(s))ds =0 (11)
t

where n > 1 and ¢,\, T are positive constants.
Analogous results were obtained in Bainov, Myshkis, and Zahariev [7] for a more general class
of equations which have the form
(n) B(t)
[a(t + )+ X)) + | o K(toale)ds =0, o) < A0 (12)
aft)
The main problem was to find conditions which must be satisfied by the functions o and 8 so that
the general method could be applied to equation (1.2). This required the use of essentially new

arguments and the results obtained were announced without proofs in [4].

In the present paper these results are extended to a class of equations of the form

[(Zz)O™ + jl K(t,s,2(s))ds = 0, (13)
t
where I, is a measurable subset of R and L is an operator of the difference type (see, for instance,
equality (2.3) below). It is immediately seen that equation (1.2) is a particular case of equation
(1.3) where T, = [a(t), A(t)] but, independent of this, some of the results obtained in the present
paper are new also for equations of the form (1.2).
2. BASIC CONCEPTS AND MAIN RESULTS.

DEFINITION 2.1. We shall say that the property @ which depends on the parameter ¢ is
fulfilled if it is fulfilled for all sufficiently large values of t € R.

DEFINITION 2.2. The function ¢:[ay,,00) = R is said to be with constant sign if ¢(t) 20
(¢(t) <0) for t€[ay00). In particular, the zero function p(t) =0 can be regarded as a non-
negative as well as nonpositive function with constant sign.

DEFINITION 2.3. The function ¢:[a,00) — R will be called oscillating if it is not ultimately
with constant sign.

By AC™ [a,00) (AC_l [@,00) ), n >0, we shall denote the space of functions ¢:[a,c0) — R with
locally absolutely continuous derivatives up to the n-th order (locally summable).

Consider the operator-differential equation
(L) (O™ + (F2)(£) =0 - (2.1)

We assume that the operators L and F are defined on some non-empty set D of functions
peACm—! [ap, ) and for each p€D we have Lp€ Acn—1 [Bpy 0), Fop € Ac1 [¥r00),
B 1p ER.

DEFINITION 2.4. A function z € D will be called an ultimate solution of equation (2.1) if it
turns it into identity for almost all t > ¢, t, €R.

DEFINITION 2.5. We shall say that equation (1.3) has the property A if each of its solutions
z for n even either oscillates or is ultimately zero and for n odd either oscillates or z(t) and (Lz)(t)

tend to zero as t — oo.
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THEOREM 1 [3]. Let the operators L and F satisfy the following conditions:

1L. If the function ¢ € D is ultimately with constant signs, then the function Ly is ultimately
with constant sign as well. Moreover, ¢ and Ly have the same sign, i.e., if ultimately ¢(t) >0
(¢ (t) £0), then ultimately (Lyp)(t) > 0 as well ((Ly)(t) < 0).

1F. If the function ¢ € D is ultimately with constant sign, then the function F is ultimately
almost everywhere with constant sign and ¢ and Fy have the same sign.

2L. If the function ¢ € D is ultimately with constant sign and Ly is ultimately zero, then ¢ is
ultimately zero.

3L. If n is odd, p€ D is ultimately with constant sign and lter oO(ch)(t) =0,
then . En;ogo(t) =0.

1LF. If the function ¢ € D is ultimately with constant sign and %iminf | (Le)(t)] >0, then
— 00
oo
[ 1Fe®1dt=co.

Then equation (2.1) has the property A.
REMARK 2.1. We shall note that the formulation of Theorem 2.1 is an immediate
generalization of Theorem 4 from [3] and the proof repeats literally the proof of Theorem 4 from [3].
Let the operator L from equation (1.3) be as in equation (2.1) and let the function
K: Dy — R where Dy is a measurable subset of R3. By & we denote some set of unbounded above
and measurable subsets of R.
We shall assume that the function K and the set I, satisfy the following conditions:
1I. There exists a number 7 € R such that the set I, is defined and non-empty for t € [y, 00),
the set Q@ = {(¢, s) € R? [t € [, 0), s €1,}is measurable and for t > v the following relation holds:

t
J meas I, dT < oo.
v

REMARK 2.2. In order for the function K, to be measurable, it suffices for the function K to
satisfy the Carathéodory conditions.
THEOREM 2.1. Let the following conditions be fulfilled:
1. Conditions 1L-3L, 1I and 1K hold.
2. For each ultimately with constant signs function ¢ € D such that ltigigof | (Le)(t)] >0,

there exists a set E, € 8, E,, C [, 00) and a constant C\, > 0 such that |p(t)| > C, for t € E,,.
3. There exist numbers ¢}, s; € R such that

sgnK(t, s, u) = sgnu
fort>ty, s> s, (t,s,u) € Dg.
4. For each constant ¢ > 0 the inequality tliminf | K(t,s,n)| >0, | N| >¢,(ts,n)€Dg
, § — 00

holds if its left-hand side makes sense.

5. tEmw (inf I;) = oo.
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6. For each set E € 8 the following relation holds
J meas {t|(t, s) € @} ds = oo.
E

Then equation (2.1) has the property A.
PROOF. It is immediately seen that conditions 3 and 5 of Theorem 2.1 imply condition 1F
of Theorem 1 for the operator

(Fe)(t) == [1 K(t, s, ¢(s)) ds.
t
We shall prove that for the operators L and F from (1.1) condition 1LF is fulfilled.
Let o€ D and assume, for the sake of definiteness, that ¢(t)>0 for t€[6,, oo] and
ltir_r:igljt’ (Lp)(t) > 0. By condition 2 of Theorem 2.1 there exists a set E, € 8 and a constant Cy, >0

such that ¢(t) > C,, for t € E,. From conditions 3 and 4 of Theorem 2.1 it follows that there exists
a number ¢, > s, such that the following inequality holds

a, = Ligliélf K(t,s,u)>0, (t,s,u) € D . (2:2)

@
tv325¢

Moreover, from condition 2.2 of Theorem 2.1 it follows that there exists a number £‘P 2t such
that for t > £, the inequality inf I, > max (g, a,) holds.

It remains to prove that

o0
j (] K(t, s, ga(s))ds) dt = 0. 23)
1
[ 39 t
The Fubini Theorem and condition 6 of Theorem 2.1 imply the inequalities

| * (I K(t, s, cp(s))ds)dt: | * g K, s)dt)ds
Y A\ % tele, %) ISe 1y

2> a‘pdt)ds
Eq,ﬂ[e,p, o) {te K‘P' o) | s € I;}

=ay, J meas {t € [y, 00) | s € I}} ds = oo.
Evﬂ[e‘p,oo)

This completes the proof of Theorem 2.1.

REMARK 2.3. Condition 4 of Theorem 2.1 can be weakened which will extend the scope of
its applications, namely conditions 4 and 6 of Theorem 2.1 can be replaced by a “combined”
condition of the following form: for any element E € 8 and any constant ¢ > 0 the following relation
holds

{I inf [K(t,s,u)Idt}ds:oo.
[ul 2¢
E {tl(ts)e@}



INTEGRO-DIFFERENTIAL EQUATIONS OF NEUTRAL TYPE 123

Analogously, the respective assumptions in Theorems 3 and 4 and in Corollary 2.1 can be
weakened.
Consider the operator

(L)ty= 3 & Op(hi (), 1€t 00) (24)

where m > 1, ¢, €C [tp,00), sup  [q;(t)| < oo, h; € C[ty, 00),i = I,m.
L€ [t,,00)
Now we shall consider the question what properties the totality of sets § should have so that
the operator L defined by equality (2.4) should satisfy condition 2 of Theorem 2.1.
LEMMA 2.1. Let the following conditions be fulfilled:

1. There exists a constant 7 > 0 such that

sup  |h(t)—t| <7, i=Lm.
€[ty 0]
2. There exists a constant ! >0 such that for each closed set B C [¢,, 0o] the following
inequality holds

meas h;(B) >l meas B, i=1,m.
3. The totality & consists of all measurable sets E C R satisfying the estimate
meas (EN[t, t+37)) > min (3r, IZ), for t > oy, (2.5)

Then, if we set D = C [t,, 00), the operator L defined by equality (2.4) satisfies condition 2 of
Theorem 2.1.

PROOF. Let o€ C [t,, 00) be an arbitrary function with ultimately constant sign and
assume that |q;(t)| <A, i=1,m, A>0,|(Ly)(t)| >C >0 for t €[§,, ). (From condition 1 of
Lemma 2.1 it follows that for t > t, + 7 the right-hand side of (2.4) is defined.)

Set Cp=-Cp B, = {t2 6,1 ¢(t)| 2 C,} and af = §,. For t > 5, we obtain

'Hl{se[t+r,t+2r]|h,~(s)¢ E,} =4,
1=
which implies

m
igl meas {s € [t + 7, t+27] | hi(s) € E,} > 7.

Hence
; g“‘ll'l meas {h;([t+7,t+27))NE,} > 7. (26)

Inequality (2.6) implies inequality (2.5) for E = E,,.

REMARK 2.4. If for i =1,m, the inequality h;(t) >t (h;(t) <t) holds, i.e., all transformed
arguments are of forestalling (retarding) type, then in estimate (2.5) we can replace 37 by 27.

REMARK 2.5. If meas{h;([t,t+7])Nh;([t,t+7])=0 for t €[t,, 00), i, j=1,m, i # j, then
from inequality (2.6) it follows that in the right-hand side of estimate (2.5) the number % can be
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replaced by Ir.

This assertion still holds if we replace 37 by 27 and all transformed arguments

h;(t), i = 1,m, are either of forestalling or of retarding type only. In particular, this is satisfied for

the operator L in equation (1.1).

REMARK 2.6. If the functions k; € AC[t,, 00), i =1,m, then condition 2 of Lemma 2.1 is

equivalent to the following condition:

l:= vari inf __ ht)>0.
t€(tg,00),i=T,m

LEMMA 2.2. Let the following conditions be fulfilled:
1. The set E C R is measurable.

holds
meas (EN[t, t+ p]) > q.

2. There exist constants p, ¢, ap € R, p > ¢ > 0 such that for t > a, the following inequality

Then for each measurable function f:[af, 00) — [0, 00) the following inequality is satisfied

00
1 .
flo)ds2qp™ [ inf . f(o)ds.
En[ag, o) 2E
PROOF.
(o]
fls)ds = 3, [ f(s) ds
Enfag, o) =1 Enlag+ip ap+(i+1)p]
>q¢ 3 inf
-q,-;l aE+ip56"%aE-+(i+l)pf(a)
ap+ip
1 .
24qp P . SSU%1£+2p f(o) ds
=1 ag+(i-1p

flo) ds.

inf
s<o<s+2p
°E

Consider the equation

m A (n) K e .
L:lai(t)m( i(t))] +Ift (t, s, z(s) ds =0, t>t,

where m,n>1, q; € AC™ ! [t,,00), sup |a;(t)| <ooand h; € AC™ [ty, ), i = I,m.
t>1,

THEOREM 2.2. Let the following conditions be fulfilled:
1. Conditions 1 and 2 of Lemma 2.1 hold.
2. Conditions 1I, 1K and conditions 3-5 of Theorem 2.1 hold.

(27

3. All functions a,(t) are ultimately nonnegative, a;(t) has no intervals of zeros and for n odd

the relation lgm iO%f ay(t) > 0 holds.

4. The following relation holds

oo
I . SvinS slifﬁr meas {t| (¢, 0) € Q}ds = oo.

(2.8)
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Then equation (2.1) has the property A.

PROOF. It is immediately seen that for the operator L defined by equality (2.4) condition 3
of Theorem 2.2 implies conditions 1L-3L. Therefore, in order to apply Theorem 2.1 it remains to
prove that condition 6 of Theorem 2.1 holds for any measurable set E satisfying estimate (2.5).
This is obtained immediately from Lemma 2.2 if we set f(s) = meas {t|(¢,s) € Q}.

This completes the proof of Theorem 2.2.

REMARK 2.7. If all transformed arguments k;(t), i = I,m, are of the forestalling (retarding)
type, then the number 67 in relation (2.8) can be replaced by 4r.

REMARK 2.8. Set

I, =[aft), B(t)], t €[ty o0) (2.9)

where a and 3 are continuous ultimately strictly increasing functions and a(co) = co. Denote by @
and B the inverse functions to a and f and assume that the function @— B is ultimately non-
decreasing or ultimately non-increasing. Then relation (2.8) is satisfied if and only if the following

relation holds
[ 180) - a(0ldt = o (210)

Another sufficient condition for relation (2.8) to be satisfied when I, is of the form (2.9) is
either the function a or the function 3 to be ultimately Lipschitz continuous and, moreover, the
following relations to be fulfilled htnl sup a(t) = oo, 1}1’1’_1. iO%f [B(t) — a(t)] > 0.

The last two conditions are satisfied, for instance, for the set I; in equation (1.1).

REMARK 2.9. We shall show that condition (2.8) is precise even for equations of the type
(1.2).

Consider the equation

B(1)
[z(t + 7) + Az(d)] + J o z(s)ds =0, (211)

where n=1; 7,4 are positive constants, A € (0,1) and the function; aft) and B(t) satisfy the
conditions formulated in Remark 2.8. Then conditions (2.8) and (2.10) are equivalent and if
condition (2.10) holds, from Theorem 2.2 it follows that equation (2.11) has the property A.

Now let condition (2.10) be not fulfilled, i.e.

jfmm—dma<w

(/]

and choose a number t; € [t,, 00) such that the following inequality should hold

At r: (B(t) - a(t)]dt <1 .

Set to := min (2, . >mitl;+ Ta(t)) and denote by @ the set of all continuous functions

z:[ty, 00) = R such that 0lim z(t) = 1. Introduce into the set @ the usual (Chebyshev’s) metric

— 00
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and define the operator K by the equality

00 B(r)
1+/\-/\:c(t—‘r)+pj (J :t(s)ds)dr, t€[t; +7,00)
(Kz)(t) = o et

z(t)—z(t; + 1)+ (Kz)(t) + 7), L€ [ty, )+ 7).

It is immediately verified that KQ C @ and also that the operator K is contracting. From the
definition of the operator K, it is seen that its fixed point is an ultimate solution of equation (2.11)
which has the property . li)moox(t) =1. Hence, under the assumptions imposed, condition (2.8) is not
only sufficient but also necessary for equation (2.11) to have the property A.

Condition 5 of Theorem 2.1 excludes the important particular case of equations with integrals
of Volterra type.

In order to include this case as well it is necessary to sharpen conditions 3 and 6 of Theorem
2.1. The next theorem gives one of the possible variants of sharpening conditions 3 and 6 of
Theorem 2.1.

THEOREM 2.3. Let the following conditions be fulfilled:

1. Conditions 1L-3L, 11, 1K and conditions 2 and 4 of Theorem 2.1 hold.

2. There exists a point t; € R such that sgn K(t, s, u) = sgnu for all points (2, s, u) € Dy such
that t > ¢,.

3. For any constant M > 0 the following relation holds

sup | K(t,s,u)| <oo
fs| +|ul <M
(t,s,w)€ Dy

4. The following relation holds

Tlgnw (T1 i,[ meas {t € [y, T]| s € I;} ds = oc.
5. For each function ¢ € D there exists a number 7,>+ such that I,C|[a,,c0) for
t €7y, 00). Then each ultimate solution X of equation (1.3) either oscillates or has the property
lim inf | (Lz)(®)] = 0.

PROOF. It is not difficult to see that the operator F' defined by equality in general does not

satisfy condition 1F.
That is why for n > 2 we shall apply Theorem 1 to the equation

t

(L)@ + [

(JI K(r, s, z,(s)) ds) dr —|[(Lz) (t)](" - l)lt =6, = 0 (2.12)
z t

where 6, is an arbitrary sufficiently large number.
Assume that D consists of only one ultimate solution of equation (1.1) and that this solution

z is non-oscillating and l%m iol:éf | (Lz)(t)]| > 0.

We shall prove that the following relation holds

T
lim jé (Jlt|K(t, s, I(s))lds) dt =0 (2.13)

T — oo
z
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Without loss of generality we can assume that z is an ultimately positive solution and

represent the integral in (2.13) in the form

I: (JI | K(2, s ‘r(s))lds)dt = T{T—l J‘: (
l I

x

| K(t, s, z(s)) | ds)dt
1,0[65, 00)

+T_1[Tz<, [ |K(t,s,x(s))|ds) dt} (2.14)
t

\ [65, o0)

The first integral in the right-hand side of equality (2.14) for sufficiently large é, can be
estimated from below as the integral in (2.2) in the proof of Theorem (2.1) and, in view of condition
4 of Theorem 2.3, we conclude that

T — o

T

lm [T ] [ | K(t, s, 2(s)) | ds dt | = oo . (2.15)
)
T I,N[6;, )

From condition 1I and conditions 3 and 5 of Theorem 2.3 it follows that the second integral in
the right-hand side of equality (2.14) for T — oo is of order O(T') and, in view of cqualities (2.14)
and (2.15), we conclude that relation (2.13) holds.

From condition 1K, condition 2 of Theorem 2.3 and (2.13) it follows that for n > 2 we can
apply Theorem 1 to equa.?ion (2.12), hence each of its solutions either oscillates, or . l_i_.moo(La:)(t) =0
which contradicts our assumption concerning z(t).

In the case n =1 the contradiction follows immediately from (2.12) and (2.13).

This completes the proof of Theorem 2.3.

COROLLARY 2.1. Let the following conditions be fulfilled:

1. Conditions 1 and 2 of Lemma 2.1 and conditions 1I and 1K hold.

2. Condition 4 of Theorem 2.1, condition 3 of Theorem 2.2 and conditions 2, 3, and 5 of
Theorem 2.3 hold.

3. The following relation holds

[o.9)
. —1 .. _
Th—?loo (T J7 , Jral ;n+f61_ meas {t€[y,T]||o € It}ds) =00, (2.16)

Then each solution z of equation (2.7) either oscillates or l}m ioxéf | (Lz)(t)| = 0.

The proof of Corollary 2.1 follows immediately from Lemmas 2.1 and 2.2 and Theorem 2.3.

It is immediately seen that Remark 2.7 still holds for relation (2.16). In the case when I, is of
the form (2.9), the functions a(t) and S(t) are continuous and sup |a(t)| < oo, condition (2.16)

takes the following simple form L € [to, )

. -1 T
lim (T [ A(t)dt | = oo.
T — o0 o
We shall note that in the work the properties of the solutions of equations (1.3) and (2.7) are
investigated, the existence of which is assumed a priori.
This makes possible a trivial generalization of the results obtained for the case when the set I,

and the function K depend on the solution z. For instance, if z = z*(¢) is a solution of an equation
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of the form (1.3) with I = It,z(t)v then the same function is a solution for I = I; ,+(t) as well,
whence our assertion follows. Generally speaking, the general scheme of such a transition is the
following: if a set M and a map &: M — 2P, P C M, are given, then z € ®(z) implies € P. In our
case M is the set of the functional parameters which can participate in equation (1.3), ® is the set
of the respective solutions and P is the set of the solutions having the property A.
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