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ABSTRACT: It is shown that a compact almost complex surface in 5’6 is either totally geodesic or

the minimum of its Gaussian curvature is less than or equal to 1/3.

KEY WORDS AND PHRASES. Almost complex surfaces, nearly Kaehler structure, totally

geodesic submanifold, Gaussian curvature.

1991 AMS SUBJECT CLASSIFICATION CODE. 53C40

1. INTRODUCTION.
The six dimensional sphere ,5,6 has almost complex structure J which is nearly Kaehler, that is,

it satisfies (XJ)(X)= 0, where is the Riemannian connection on ,5’6 corresponding to the usual

metric g on 5’6. Sekigawa [1] has studied almost complex surfaces in S6 and has shown that if they

have constant curvature K, then either K 0, 116 or 1. Under the assumption that the almost

complex surface M in 5’6 is compact, he has shown that if K > 1/6, then K 1 and if 116 < K < 1,

then K 1/6. Dillen et al [2-3] have improved this result by showing if 1/6 < K < 1, then either

K 1/6 or K 1 and if 0 _< K _< 116, then either K 0 or K 1/6. However, using system of

differential equations (1) (cf. [5], p. 67) one can construct examples of almost complex surfaces in
,5’6 whose Gaussian curvature takes values outside [9,1/6] or [1/6,1]. The object of the present

paper is to prove the following:
THEOREM 1. Let M be a compact almost complex surface in St} and K0 be the minimum of

the Gaussian curvature of M. Then either M is totally geodesic or K0 < 1/3.
2. MAIN RESULTS. Let M be a 2-dimensional complex submanifold of 5,6 and g be the induced

metric on M. The Riemannian connection of 5,6 induces the Riemannian connection X7 on M
and the

connection 7-L in the normal bundle u. We have the Gauss and Weingarten formulae

TxY X7xY + h(X, Y), "Xy -ANX + 7x N, X, Y
_
(M), N 6. u, (2.1)

where h, AN the oa f=a,=ta fom satisfying 9(h(X, Y),N)= 9(ANX, Y) and (M)is
the Lie-algebra of vector fields on M. The curvature tensors , R and R-l- of the connections ,
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X7 and V-I- respectively satisfy

R(X, Y;Z, W) it(X, Y;Z, W)+ (h(Y, Z), (X, W))- ((x, z), h(Y, W))

(X, Y;N1,N2) R .L (X, Y:N1,N2)- 9([AIvl,AN](X),Y
[(X, Y)Z] +/- =(xh) (Y, Z)-( CYyh) (X, Z), X, Y, Z, We5(M), N1,N2er,,

where [(X, Y)Z] +/- is the normal component of (X, Y)Z, and

x)(r, z) v (r, z)- (Y, VxZ).

The curvature tensor of S6 is given by

R(X, Y;Z, W) g(Y, Z)g(X, W)- g(X,Z)g(Y, W). (2.5)

LEMMA 1. Let M be a 2-dimensional complex submanifold of S6. Then (XJ)(Y)= O,
X, Ye(M).

PROOF. Take a unit vector field Xe(M). Then {X, JX} is orthonormal frame on M.
Since S is nearly Kaehler manifold we have (XJ)(X)= O, and (XJ)(JX)= 0. Also

VXJ)(JX J( VxJ)(X 0 and (XJ)(X) -( VxJ)(JX O.

Now for any Y, Ze(M), we have Y aX +bJX and Z cX +dJX, where a, b, c and d are

smooth functions. We have

(X7yJ)(Z) a( VXJ)(Z + b (]XJ)(Z) a( VZJ)(X b( VZJ)(JX
-ac( 7XJ)(X -ad( ]XJ)(X)- bc( XJ)(JX)- bd(]XJ)(JX) O.

LEMMA 2. For a 2-dimensional complex submanifold M of 5’6, the following hold

(i) h(X, JY) h(JX, Y) Jh(X, Y), VxJY J VXY,

(ii) JANX AjNX ANJX JANX
(iii) ]xh)(Y, Z) Vxh)(JY Z) Vxh)(Y JZ),

(iv) R(X, Y)JZ JR(X, Y)Z, X, Y, Ze(M),Yet,.

PROOF. (i) follows directly from Lemma and equation (2.1). The second part of (ii) follows
from (i). For first part of (ii), observe that for Net, and Xe(M),
g((VXJ)(N), Y)= -g(N, (xJ) (Y))= 0 for each Yet.E(M), that is, (VxJ)(g)is normal to M.
Hence expanding ( XJ)(N) using (2.1) and equating the tangential parts we get the first part of

(ii).
From equations (2.4) and (2.5), we get

X7xh)(Y, Z)= Vyh)(X, Z) Vzh)(X, Y), X, Y, ZecI,(M). (2.6)

Also from (i) we have

Vxh)(JY Z) Vxh)(Y, JZ), X, YeT:,(M). (2.7)

Thus from (2.6) and (2.7), we get that

Vxh)(JY Z) Vxh)(Y JZ) X7yh)(X, JZ) Vyh)(JX, Z) ]xh)(Y, Z),

this together with (2.7) proves (iii). The proof of (iv) follows from second part of (i)..

(2.2)

(2.3)

(2.)
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The second covariant derivative of the second fundamental form is defined as

2h) (X, Y, Z, W) V-l- x( h) (r, z, w)- h) TxY, Z, W)

-( v h) (r, VxZ, w)- v h) (r, z, VxW),

where V h) (X, Y, Z) 7xh (Y, Z), X, Y, Z, W%(M).
Let II’UM- M and UMp be the unit tangent bundle of M and its fiber over pcM

respectively. Define the function f: UM R by f(U) h(U, U)I[ 2.
For UcUMp, let au(t be the geodesic in M given by the initial conditions aU(0)= p,

&U(0) U. By parallel translating a VUMp along aU(t), we obtain a vector field Vu(t). We have

the following Lemma (cf. [5]).
LEMMA 3. For the function fu(t)= f(Vu(t)) we have

(i) tt fu(t) 2g(( h)(irU, VU, VU), h(Vu, Vu))(t),
d2 2)(ii) - fu(O) 2g(( V (U, U, V, V),h(V, V))+ 9. 1[( h) (U, V, V)[[ 2

3. PROOF OF THE THEOREM 1. Since UM is compact, the function f attains maximum

at some VcUM. From (i) of Lemma 2, [[h(V, V)[[2 [[h(jV, JV) I[2 and thus we have

fv(O) < 0 and fjv(O) <_ O. Using (iii) of Lemma 2 in (2.8) we get that

2h)(JV, JV, V, V)= 2h)(JV, V, JV, V).

The above equation together with the Ricci identity gives

2h)(JV, JV, V, V)- 2h)(JV, V, JV, V).

2h)(YV, V, JV, V)- 2h)(V, JV, JV, V)

R +/- (JV, V)h(JV, V) -h(R(JV, V)JV, V) -h(JV, R(JV, V)V).

Taking inner product with h(V, V) and using (iv) of Lemma 2, we get

g(( 2h) (JV, JV, V, V)-( 2h) (V, JV, JV, V),h(V, V)) (3.1)

R _1_ (JY, Y;h(JY, Y),h(Y, V))- 2g(h(R(JY, Y)JY, Y),h(Y, Y)).

Now using (i) of Lemma 2, we find that g(h(U, V),h(U, JV)) O, that is, g(Ah(v, Vu),JV 0 for

all UUMp. Since dimM 2, it follows that Ah(u, Uu)= AU. To find A, we take inner inner

product with U and obtain X h(U, U)[[ 2. Thus, AhU(u u) h(U, U)[[ 2U. From equations

(2.2) and (2.5) we obtain

R(X, Y)Z g(Y, Z)X- g(X, Z)Y A- Ah(y, z)X Ah(X, z)Y,
which gives

R(JV, V)JV V + Ah(v,JVjv Ah(.Iv, Y.lv) Y + 2Ah(v, Yv) V + 2 h(V, V)[[ 2V.

Also from (2.3) and (2.5) we get

R _1_ (JV, V, h(JV, V),h(V, V))= g([Ah(YV, v),Ah(v, V)](JV), V)

2g(Ah(v, v)V, Ah(v, vV))
2 h(V, V)II 4.

(3.2)
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Substituting (3.2) and (3.3)in (3.1) we get

g(( 2h) (JV, JV, V, V) -( 2it) (V, JV, Jr, V), It (V, V)) 2f(V) (1 3f(V)).

From (iii) of Lemma 2, it follows that

It) (JV, JV, V) It) (J2V, V, V) -( h) (V, V, V),

this together with X7 xJY J xY of (i) in Lemma 2, gives

7 2h)(V, JV, YV, V) -( 2h) (V, V, V, V).

Using this and (ii) of Lemma 3 in (3.4), we obtain

d2 d2- fv(O) +- fjv(O) 2f(V)(1 3f(V)) + 2 I1( v h)(V, V, V)II 2 + 2 I1( h)(YV, V, V)II 2 < 0

Thus either f(V) 0, that is, M is totally geodesic or 1/3 y(V). Since an orthonormal frame of

M is of the form (U, JU), the Gaussian curvature K of M is given by

g 1 + g(h(U, U),h(JU, JU)) g(h(U, JU),h(U, JU)) 2 h(U, U)II 2.

Thus K:UM .--,, R, is a smooth function, and UM being compact, K attains its minimum
g

0 minK and we have g0 1- 2max h(U, U)I] 2, from which for the case 1/3 _< f(Y), we get
K,0 < 1/3. This completes the proof of the Theorem.

As a direct consequence of our Theorem we have

COROLLARY. Let M be a compact almost complex surface in 5"6. If the Gaussian curvature

K of M satisfies K > 1/3, then M is totally geodesic.

(3.4)
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