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ABSTRACT. 1In this paper a I'-group congruence on a regular I'-semigroup is defined,
some equivalent expressions for any I'-group congruence on a regular I-semigroup and
those for the least I'-group congruence in particular are given.
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1.  INTRODUCTION.
Let S and T be two nonempty sets,S is called a -semigroup if for all a,b,c € S,

BET (i) aab€ S and (ii) (aab)Bc = aa(bBc) hold. S is called regular I-semigroup
if for any a € S there exist a'€ S, a,8 € I' such that a = axa'Ba. We say a' is
(a,B)-inverse of a if a = aaa'Ba and a' = a'Baca' hold and in this case we write
a'¢g Vg(a). An element e of S is called a-idempotent if ede = e holds in S. A right
(left) I'-ideal of a I'-semigroup S is a nonempty subset I of S such that ITSC T
(STIC I). A I'-semigroup S is said to be left (right) simple if it has no proper
left (right) I'-ideal. For some fixed @ € I if we define aob = aab for all a,b €& S
then S becomes a semigroup. We denote this semigroup by Sa' Throughout our discussion
we shall use the notations and results of Sen and Saha [1-2]. For the sake of com-
pleteness let us recall the following results of Sen and Saha [1].

THEOREM 1.1. Sa is a group if and only if S is both left simple and right
simple '-semigroup. (Theorem 2.1 of [1]).

COROLLARY 1.2. Let S be a I'-semigroup. If Sa is a group for some @ € ' then
Sa is a group for all a € I'. (Corollary 2.2 of [1]).

A T-semigroup S is called a I'-group if Sa is a group. for some (hence for all)a € T.

THEOREM 1.3. A regular I-semigroup S will be a I'-group if and only if for
all a,B€ T, eaf = fae = £ and eff = fBe = e for any two idempotents e = ede and
f = fAf of S. (Theorem 3.3 of [1]).

2. T-GROUP CONGRUENCES IN A REGULAR TI'-SEMIGROUP.

An equivalence relation p on a I-semigroup S is called a congruence if (a,b) € P
implies (caa,cab) € p and (aoac,bac) € p for all a,b,c € S, a € T ., A congruence 0 in
a regular I-semigroup S is called I-group congruence if S/p is a I-group (In S/p
we define (aP)a(bP) = (a®b)P). Henceforth we shall assume S to be a regular I'-
semigroup and Ea to be its set of G-idempotents. .

A family {Ka : @€ T} of subsets of S is said to be a normal family if
(i) E,S Ky forallaeTl ;

(ii)  for each a € K, and b € Kg, adb € Kg and aBb € K
(iii) for each a'eg V (a) and ¢ € K v’ aacya' and aycaa' € KB
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Now let e € Ey and f € Fg and u€ I'. Let x € V3(euf). Then Oxde € F, . Thus
EU # ¢ for all p€ T, consequently l(u # & for all u € ', We further note that in
an orthodox T'-semigroup S of Sen and Saha [2] {Eu : a €T} is a normal family of S.

let N be the collection of all normal families I(i of S(i € A) where
K, = {Kia :a€ T} Let U, = iQAKia and Ul = {Ua : a € T}. Then obviously E & U
Also if a € Ua' b€ UB' then a & Kiot for all i € A, b€ KiB for all i € A. Thus
aab € KiB and aBb € Kiaefor all i€ A implying aab € UB and aBb € U . Similarly we
can show that if a'¢€ V‘a(a) and c € U‘1 then aacya', aycaa' € UB' Thus U is a normal

ar

family of subsets of S and U is the least member in N if we define a partial order
in N by Ki < K, iff Kiag_ K‘a for all a € T. We also observe that when S is orthodox
I'-semigroup, U = {Ea :a€ T},

THEOREM 2.1. Let S be a regular I'-semigroup. Then for each K = {Ku :a € THE N,
oy = {(a,b) € SxS : ade = fBb for some @,B € I and e € Kyr £ € KB} is a T-group
congruence in S.

PROOF, Let a€ S and a' € Vg(a). Then aa(a'Ba) = (ada')Ba implies (a,a) € Py
Next let (a,b) € Py Then there exist e € Ku’ f € KB for some a,8 € ' such that
ace = fBb. Let a' € Vg(a) and b' € Vg(b) such that bO( (b"dfBb)Y(a'Sa))
= ((bBb')d(aceya'))Sa. But b'ofBb € KS’ a'da € l(Y and so (b'¢fBb)Y(a'ba) € Kg , and
bBb' € K¢, aaeya' € KG and so (b6b')d(aceya') € KG' Consequently, (b,a) € DK. Now
let (a,b) € g (b,c) € ox- Then there exist «,B8,Y,0 €T, e € Koo fe KB' g € KY'
he& KG such that aoce = fBb and byg = hdc. But aa(eyg) = (ade)yg = (£Bb)yg = £B(bYg)
= fB(hdc) = (£fBh)8c where evg € Ka and fBh € KvS' Thus (a,c) € DK and consequently
0g is an equivalence relation. Let (a,b) € Py 96€ T, cée S(.5 Then aCe = fgb for
some a,B€ I and some e € Ka’ fe€ KB. Let ¢c' € VY(c), y € Vyi(bec), x € Vyg(aec),

Now (aﬁc)Y(C'6((cY2xﬁza)ue)6c)Yl (y61(b9c)) = (aecYZx)szB(bechy)ﬁl(bec). But
cY,x6,a € EgC Ky, so (cy,xSja)0e € Kg, c'6((cY2x52a)0e)9c € K. Again
yél(bec)e E., € K, and consequently (c'8((cY,x6,a)ae)6c)Y,(yS.b6c) € K. By a
Y Yl 2772 1 1 Y

similar arguml,nt we can show that (aGchx)ész(bechy) € Kg . Thus (afc,bbc) € g
Also it is immediate from the foregoing by duality that (ceé,cﬂb)e OK. Thus DK is a
congruence on S. Also as S is regular, S/pK is a regular I'-semigroup. Let e € Ea'
f € Eg. Then eaf, foe € KB, eff, fBe € Ka' Now (eaf)Bf = (eaf)Bf shows that
(eaf,f) € Px and (fae)Bf = (fae)Bf implies that (fae,f) € Py Thus (eDK)(! (fDK)=fOK
and (fOK)a(eOK) = pr. Similarly we can show (eDK)B(fDK) = ePy and (fDK)B(eOK)seDK.
So it follows from Theorem 1.3 that S/DK is a I-group. Thus Py is a I-group congru-
ence on S.

For any normal family K = {Ku : @ €T} of S, the closure KW of K is the family
defined by KW = ((KW)Y : Y €T} where (I(W)Y ={x€S :exx¢€ l(Y for some @ € T and
e € K,}. We call K closed if K = KW.

THEOREM 2.2. For each K € N, P = {(a,b) € SxS : aYb'€(. . for some b'€ vf,(b)} .

PROOF. Let (a,b) € P Then fBa = bae for some a,B € T and e € Ky» fe KB.
Then fg(ayb') = baeyb' € K6 for some b' € Vg(b). Consequently ayb'€ (Kw)éf Conversely,
let ayb' € (l(w)(S for some b'€ Vg(b). Then eaayb'€ K, for some o€l and e € K . There-
fore egayb' = f where f € Ké. So (b8(a'deaa)yb')sa = bB(a'dfsa), for some a' € Vg(a)
where bg(a'deqa)yb' € K(S and a'¢féa € l(e. Consequently (a,b) € Pk~

For any congruence p on S, let ker p = {(ker p)a : a € T} where

(ker D)a = {x€ S : epx for some e € Eu.}'
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LEMMA 2.3. For any K€ Y, ker oy = KW.
PROOF. To prove ker ox (k".\‘)rl for all
a € I'- For this let x € (ker DK)G for some o € I'. Then epr for some e (Ea that is
e3f = gyx for some 3,y € . e € Ea' t € KB' g€ KY. So gyx € Ka as e3f € ‘\'a. Thus
x € (KW) . Next let x € (KW)Q. Then gyx € Ka for some y € I' and g € Ky' Now for some
e € E eq(gyx) (eag)yx where gyx € I((1 and eqg € Ky' Thus epyX. Consequently
X € (ker pK) So (ker DK)u (}\W) for all o« €T,
Let K € N and suppose aYb' € (K"’)(S for some b' € V (b) Then ecaYb' € KG for some
a€ Tl and e € '( . Then for any a' € Ve(a). a'¢(e<!aYb )da € Kg and (a'dexayb'Sa)ba’db
= (a' ¢e<!a)Yb G(aea Yob € K . Thus a'¢b € (K‘J)e. Conversely, suppose a'¢b € (kW) for
some a' € Ve(a) Then fB(a ﬂ\b) € Kg for some 8 € I'and f € KB and a®(fBa' d>b)ea'€ K¢
Therefore for some b'€ V (b), (abfBa'obba’')d(avb') = (abBfBa’)dbb(a'da)Yb' € Kg.
Therefore ayb' € (}’\w.')8 Thus ayb' € (I(W)G for some (all) b' € Vé(b) iffa'db € (XW)g
for some (all) a'€ Vg(a) Interchanging roles of a and b we see that bba' € (KW)(b
for some (all) a'€ Ve(a) iff b'da € (l(\v’) for some (all) b'€ V (b) Moreover, the
symmetric property of Py shows that ayb' € (KW)5 for some (all) b €V (b) iff
bba' € (KW) for some (all) a'€ Ve(a) Thus we have the following.

LEMMA 2 4. For each X € N, apyb iff one of the following equivalent conditions
hold.

= KW, we are to show that (ker DK)a

(i) ayb' € (l(\\!)(5 for some (all) b'€ Vz(b)
(ii) b'Sa € (I(\'l)Y for some (all) b'€ VO(b).
(iii) a'¢b € (KW)4 for some (all) a'€e V(g a). .
(iv) bBa' € (KW)d) for some (all) a'é€ Ve(a)
Let N denote the collection of all closed families in N, then N C N.
THEOREM 2.5. The mapping K + o, = {(a,b) € SxS : aYb' € Kg for some b'e Vg(b)}
is a one to one order preserving mapping of N onto the set of I'-group congruences
on S.
PROOF. Let p be a I'-group congruence on S. Let us denote ker p
by X and (ker p)a by Ka' Then Ku = {x€ S : xpe when e € Ea}' Then Bug Ka'
Let a € Ka' b€ KB then ape and bpf where e € E and f € EB' Now (aab)p = (ap)a(bp)
= (ep)a(fp) = fp. Thus aabpf, where f € EB Thus aab € l( Slm1lar1y afb € l(
Next let a' € Vg(a) and ¢ € Ky. Then cpg where g € E Then (aacya o= (ap)a(co)Y(a p)
= (ap)a((gp)y(a'p)) = (ap)a(a'p) = (aaa')p. Thus aacya 'paca’ where aaa'€ EB Hence
aacya' € KB. Similarly aycaa' € KB' Therefore K is a normal family of subsets of S.
Next (KW) = {x € S : eax € K_ where e € Ka for some a € T'}. Then KY c (KW)Y°
show (KW)_ & KY' let x € (KW)_. Then eax € KY for some a € T and e € K(!' Consequently
(eax)p = gp where g € EY or,(ep)a(xp) = gp or, xp = gp or, x € Ky‘ Thus (KW)YQ Ky'
Therefore K = KW and so K = ker p € N. Thus if P is a T-group congruence, then
ker p = K G Y. We shall now prove that OK =p. If (a,b) € DK , then aYb'é€ KG for
some b'€ V (b) Thus aYb' p h for some h € Eg and ap = (ap)Y((b'8b)p) = (hp)S(bP) = bo.
Thus DKC D Conversely, if (a,b) € p and b' € Va(b) thenayb'o byb'g | ? nd so (a, b)GF‘.K-
Therefore p = O . Thus from above and by lemma 2. 3 for any K € N K+ DK is a one-
to-one mapping from N onto the set of all I'-group congruences on S. Also it is easy
to see that K + DK is an order preserving mapping.
Let T be a I'-group congruence on S, by the proof of Theorem 2.5 T = DK, where
K = ker T€ N. Thus each T-group congruence is of the form ox for some K€N CN.
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Thus by lemma 2.3 we have,
THROREM 2.6. The least I'-group congruence ¢ on S is given by g = Py and kero = Uw.
THEOREM 2.7. For any T'-group congruence Px with K in N, on a regular I-semigroup,
the following are equivalent.
(1) apyb.
(ii) auxyb'€ K(S for some x € K (u € T') and some (all) b'€ V (b)
(iii) a'déxube K for some x € K (u€ T) and some (all) a'€ v¢ (a)
(iv) bux%a'€ K¢ for some x€ K (u€ T) and some (all) a'€ ge(a)
(v) b'Sxpa € KY for some x € K (u € T') and some (all) b' €Vy(b)-
(vi) aae = fB8b for some a,B € T and some e € Ka' f€e KB.
(vii) eca = bRf for some @,3 € T and some e € Ka' fe KB.
(viii) KBBaaKun KBBbaKQ # ¢ for some a,B€ T.
PROOF. (ii) => (iii) Suppose auxyb' € l( for some x € K and b' €V (b) Then for
any a'€ V¢(a). a'¢(auxyb')8b = (a' ¢a)u(x7(b Gb)) € Kg as a d>a € Kg and be &b € K .
(iii) = (v1) Let a'dxub € K for a'€ Ve(a) and x € K
Then a6(a'dxub) = (aba’' ¢x)ub which is (vi) as a ¢xub€ I(e and afa'éx € Ku'
(vi) => (viii) Let aae = fBb for some @,B€ I and e € Ka , £ € KB' Then we have
fBaceae = f3fRbae implying KBBaaK N KBBbaK # o.
(viii) => (ii) Let KBBaaK nx BbuK # ¢. Then xBaay = x Bb(!yl for some x, Xy € KB ,
y.¥,€ Ky If a eV (a)., b'e Vy(b) +then'a'éxBa €Kg and (a'éxBa)ay € Kg and we have,
ae(a'd;xBaay)yb' = (aea )o(xBaay)yb' = (aba' )¢(xIBbuyl)Yb' = (afa’ )¢x18(buleb ) € Ky
as baylyb'é KG’ xlB(buleb')€ K and aba'E KO'
Thus (ii), (iii), (vi) and (viii) are equivalent.

L =S =~ A =4

Interchanging the roles of a and b we see that (iv), (v), (vii) and (viii) are
equivalent. Also (i) and (vi) are equivalent by Theorem 2.1. Thus all the conditions
(i) - (viii) are equivalent.
COROLLARY 2.8. Let O denote the least I'-group congruence on a regular '-semi-
group S. Then the following are equivalent.
(i) aob.
(ii) auxyb'€ U6 for some x € U (un € T') and some (all) b' € V (b)
(iii) a'¢xub € Ue for some x € U (u € T) and some (all) a €V¢(a)
(iv) buxfa' € U<b for some x € U (u € T) and some (all) a'€ V°(a)
(v) b'Sxupa € UY for some x € U (u € T) and some (all) b'€ V (b) N
(vi) aae = fgb for some q,B € I and e € Uy » fE€ UB
(vii) eqa = bRf for some q, € T and e € Uc: , f€ UB.
(viii) UBBaaUan UBBbaUa # ¢ for some a,B € T.
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