

Γ -GROUP CONGRUENCES ON REGULAR Γ -SEMIGROUPS

A. SETH

Department of Pure Mathematics, University of Calcutta
35, Ballygunge Circular Road, Calcutta - 700 019.
India.

(Received April 23, 1990 and in revised form September 16, 1990)

ABSTRACT. In this paper a Γ -group congruence on a regular Γ -semigroup is defined, some equivalent expressions for any Γ -group congruence on a regular Γ -semigroup and those for the least Γ -group congruence in particular are given.

KEY WORDS AND PHRASES. Regular Γ -semigroup, α -idempotent, Right (left) Γ -ideal, Right (left) simple Γ -semigroup, Γ -group, Congruence, Normal family.

1980 AMS SUBJECT CLASSIFICATION CODE. 20M.

1. INTRODUCTION.

Let S and Γ be two nonempty sets, S is called a Γ -semigroup if for all $a, b, c \in S$, $\alpha, \beta \in \Gamma$ (i) $aob \in S$ and (ii) $(aob)\beta c = a\alpha(b\beta c)$ hold. S is called regular Γ -semigroup if for any $a \in S$ there exist $a' \in S$, $\alpha, \beta \in \Gamma$ such that $a = a\alpha a'\beta a$. We say a' is (α, β) -inverse of a if $a = a\alpha a'\beta a$ and $a' = a'\beta a\alpha a'$ hold and in this case we write $a' \in V_{\alpha}^{\beta}(a)$. An element e of S is called α -idempotent if $e\alpha e = e$ holds in S . A right (left) Γ -ideal of a Γ -semigroup S is a nonempty subset I of S such that $I\Gamma S \subseteq I$ ($S\Gamma I \subseteq I$). A Γ -semigroup S is said to be left (right) simple if it has no proper left (right) Γ -ideal. For some fixed $\alpha \in \Gamma$ if we define $aob = a\alpha b$ for all $a, b \in S$ then S becomes a semigroup. We denote this semigroup by S_{α} . Throughout our discussion we shall use the notations and results of Sen and Saha [1-2]. For the sake of completeness let us recall the following results of Sen and Saha [1].

THEOREM 1.1. S_{α} is a group if and only if S is both left simple and right simple Γ -semigroup. (Theorem 2.1 of [1]).

COROLLARY 1.2. Let S be a Γ -semigroup. If S_{α} is a group for some $\alpha \in \Gamma$ then S_{α} is a group for all $\alpha \in \Gamma$. (Corollary 2.2 of [1]).

A Γ -semigroup S is called a Γ -group if S_{α} is a group for some (hence for all) $\alpha \in \Gamma$.

THEOREM 1.3. A regular Γ -semigroup S will be a Γ -group if and only if for all $\alpha, \beta \in \Gamma$, $e\alpha f = f\alpha e = f$ and $e\beta f = f\beta e = e$ for any two idempotents $e = e\alpha e$ and $f = f\beta f$ of S . (Theorem 3.3 of [1]).

2. Γ -GROUP CONGRUENCES IN A REGULAR Γ -SEMIGROUP.

An equivalence relation ρ on a Γ -semigroup S is called a congruence if $(a, b) \in \rho$ implies $(c\alpha a, c\alpha b) \in \rho$ and $(a\alpha c, b\alpha c) \in \rho$ for all $a, b, c \in S$, $\alpha \in \Gamma$. A congruence ρ in a regular Γ -semigroup S is called Γ -group congruence if S/ρ is a Γ -group (In S/ρ we define $(a\rho)\alpha(b\rho) = (a\alpha b)\rho$). Henceforth we shall assume S to be a regular Γ -semigroup and E_{α} to be its set of α -idempotents.

A family $\{K_{\alpha} : \alpha \in \Gamma\}$ of subsets of S is said to be a normal family if

- (i) $E_{\alpha} \subseteq K_{\alpha}$ for all $\alpha \in \Gamma$;
- (ii) for each $a \in K_{\alpha}$ and $b \in K_{\beta}$, $a\alpha b \in K_{\beta}$ and $a\beta b \in K_{\alpha}$;
- (iii) for each $a' \in V_{\alpha}^{\beta}(a)$ and $c \in K_{\gamma}$, $a\alpha c\gamma a'$ and $a\gamma c\alpha a' \in K_{\beta}$.

Now let $e \in E_\alpha$ and $f \in E_\beta$ and $u \in \Gamma$. Let $x \in V_\theta^\phi(euf)$. Then $f\theta x\phi e \in E_\mu$. Thus $E_\mu \neq \emptyset$ for all $u \in \Gamma$, consequently $K_\mu \neq \emptyset$ for all $u \in \Gamma$. We further note that in an orthodox Γ -semigroup S of Sen and Saha [2] $\{E_\alpha : \alpha \in \Gamma\}$ is a normal family of S .

Let N be the collection of all normal families K_i of $S(i \in \Lambda)$ where $K_i = \{K_{i\alpha} : \alpha \in \Gamma\}$. Let $U_\alpha = \bigcap_{i \in \Lambda} K_{i\alpha}$ and $U = \{U_\alpha : \alpha \in \Gamma\}$. Then obviously $E_\alpha \subseteq U_\alpha$. Also if $a \in U_\alpha$, $b \in U_\beta$, then $a \in K_{i\alpha}$ for all $i \in \Lambda$, $b \in K_{i\beta}$ for all $i \in \Lambda$. Thus $a\alpha b \in K_{i\beta}$ and $a\beta b \in K_{i\beta}$ for all $i \in \Lambda$ implying $a\alpha b \in U_\beta$ and $a\beta b \in U_\alpha$. Similarly we can show that if $a' \in V_\alpha^\beta(a)$ and $c \in U_\alpha$ then $a\alpha c\gamma a' \in U_\beta$. Thus U is a normal family of subsets of S and U is the least member in N if we define a partial order in N by $K_i \leq K_j$ iff $K_{i\alpha} \subseteq K_{j\alpha}$ for all $\alpha \in \Gamma$. We also observe that when S is orthodox Γ -semigroup, $U = \{E_\alpha : \alpha \in \Gamma\}$.

THEOREM 2.1. Let S be a regular Γ -semigroup. Then for each $K = \{K_\alpha : \alpha \in \Gamma\} \in N$, $\rho_K = \{(a, b) \in S \times S : a\alpha e = f\beta b \text{ for some } \alpha, \beta \in \Gamma \text{ and } e \in K_\alpha, f \in K_\beta\}$ is a Γ -group congruence in S .

PROOF. Let $a \in S$ and $a' \in V_\alpha^\beta(a)$. Then $a\alpha(a'\beta a) = (a\alpha a')\beta a$ implies $(a, a') \in \rho_K$. Next let $(a, b) \in \rho_K$. Then there exist $e \in K_\alpha$, $f \in K_\beta$ for some $\alpha, \beta \in \Gamma$ such that $a\alpha e = f\beta b$. Let $a' \in V_\gamma^\delta(a)$ and $b' \in V_\theta^\phi(b)$ such that $b\theta((b'\phi f\beta b)\gamma(a'\delta a)) = ((b\theta b')\phi(a\alpha e\gamma a'))\delta a$. But $b'\phi f\beta b \in K_\theta$, $a'\delta a \in K_\gamma$ and so $(b'\phi f\beta b)\gamma(a'\delta a) \in K_\theta$, and $b\theta b' \in K_\phi$, $a\alpha e\gamma a' \in K_\delta$ and so $(b\theta b')\phi(a\alpha e\gamma a') \in K_\delta$. Consequently, $(b, a) \in \rho_K$. Now let $(a, b) \in \rho_K$, $(b, c) \in \rho_K$. Then there exist $\alpha, \beta, \gamma, \delta \in \Gamma$, $e \in K_\alpha$, $f \in K_\beta$, $g \in K_\gamma$, $h \in K_\delta$ such that $a\alpha e = f\beta b$ and $b\gamma g = h\delta c$. But $a\alpha(e\gamma g) = (a\alpha e)\gamma g = (f\beta b)\gamma g = f\beta(b\gamma g) = f\beta(h\delta c) = (f\beta h)\delta c$ where $e\gamma g \in K_\alpha$ and $f\beta h \in K_\delta$. Thus $(a, c) \in \rho_K$ and consequently ρ_K is an equivalence relation. Let $(a, b) \in \rho_K$, $\theta \in \Gamma$, $c \in S$. Then $a\alpha e = f\beta b$ for some $\alpha, \beta \in \Gamma$ and some $e \in K_\alpha$, $f \in K_\beta$. Let $c' \in V_\gamma^\delta(c)$, $y \in V_\gamma^\delta(b\theta c)$, $x \in V_\gamma^\delta(a\theta c)$. Now $(a\theta c)\gamma(c'\delta((c\gamma_2 x\delta_2 a)\alpha e)\theta c)\gamma_1(y\delta_1(b\theta c)) = (a\theta c\gamma_2 x)\delta_2 f\beta(b\theta c\gamma_1 y)\delta_1(b\theta c)$. But $c\gamma_2 x\delta_2 a \in E_\theta \subseteq K_\theta$, so $(c\gamma_2 x\delta_2 a)\alpha e \in K_\theta$, $c'\delta((c\gamma_2 x\delta_2 a)\alpha e)\theta c \in K_\gamma$. Again $y\delta_1(b\theta c) \in E_\gamma \subseteq K_\gamma$ and consequently $(c'\delta((c\gamma_2 x\delta_2 a)\alpha e)\theta c)\gamma_1(y\delta_1 b\theta c) \in K_\gamma$. By a similar argument we can show that $(a\theta c\gamma_2 x)\delta_2 f\beta(b\theta c\gamma_1 y) \in K_\delta$. Thus $(a\theta c, b\theta c) \in \rho_K$. Also it is immediate from the foregoing by duality that $(c\theta a, c\theta b) \in \rho_K$. Thus ρ_K is a congruence on S . Also as S is regular, S/ρ_K is a regular Γ -semigroup. Let $e \in E_\alpha$, $f \in E_\beta$. Then $e\alpha f$, $f\alpha e \in K_\beta$, $e\beta f$, $f\beta e \in K_\alpha$. Now $(e\alpha f)\beta f = (e\alpha f)\beta f$ shows that $(e\alpha f, f) \in \rho_K$ and $(f\alpha e)\beta f = (f\alpha e)\beta f$ implies that $(f\alpha e, f) \in \rho_K$. Thus $(e\rho_K)\alpha(f\rho_K) = f\rho_K$ and $(f\rho_K)\alpha(e\rho_K) = f\rho_K$. Similarly we can show $(e\rho_K)\beta(f\rho_K) = e\rho_K$ and $(f\rho_K)\beta(e\rho_K) = e\rho_K$. So it follows from Theorem 1.3 that S/ρ_K is a Γ -group. Thus ρ_K is a Γ -group congruence on S .

For any normal family $K = \{K_\alpha : \alpha \in \Gamma\}$ of S , the closure KW of K is the family defined by $KW = \{(KW)_\gamma : \gamma \in \Gamma\}$ where $(KW)_\gamma = \{x \in S : e\alpha x \in K_\gamma \text{ for some } \alpha \in \Gamma \text{ and } e \in K_\alpha\}$. We call K closed if $K = KW$.

THEOREM 2.2. For each $K \in N$, $\rho_K = \{(a, b) \in S \times S : a\gamma b' \in V_\gamma^\delta(b) \text{ for some } b' \in V_\gamma^\delta(b)\}$.

PROOF. Let $(a, b) \in \rho_K$. Then $f\beta a = b\alpha e$ for some $\alpha, \beta \in \Gamma$ and $e \in K_\alpha$, $f \in K_\beta$. Then $f\beta(a\gamma b') = b\alpha e\gamma b' \in K_\delta$ for some $b' \in V_\gamma^\delta(b)$. Consequently $a\gamma b' \in (KW)_\delta$. Conversely, let $a\gamma b' \in (KW)_\delta$ for some $b' \in V_\gamma^\delta(b)$. Then $e\alpha a\gamma b' \in K_\delta$ for some $\alpha \in \Gamma$ and $e \in K_\alpha$. Therefore $e\alpha a\gamma b' = f$ where $f \in K_\delta$. So $(b\theta(a'\phi e\alpha a)\gamma b')\delta a = b\theta(a'\phi f\delta a)$, for some $a' \in V_\theta^\phi(a)$ where $b\theta(a'\phi e\alpha a)\gamma b' \in K_\delta$ and $a'\phi f\delta a \in K_\theta$. Consequently $(a, b) \in \rho_K$.

For any congruence ρ on S , let $\ker \rho = \{(\ker \rho)_\alpha : \alpha \in \Gamma\}$ where $(\ker \rho)_\alpha = \{x \in S : e\alpha x \text{ for some } e \in E_\alpha\}$.

LEMMA 2.3. For any $K \in N$, $\ker \rho_K = KW$.

PROOF. To prove $\ker \rho_K = KW$, we are to show that $(\ker \rho_K)_\alpha = (KW)_\alpha$ for all $\alpha \in \Gamma$. For this let $x \in (\ker \rho_K)_\alpha$ for some $\alpha \in \Gamma$. Then $ep_K x$ for some $e \in E_\alpha$ that is $e\beta f = g\gamma x$ for some $\beta, \gamma \in \Gamma$, $e \in E_\alpha$, $f \in E_\beta$, $g \in E_\gamma$. So $g\gamma x \in K_\alpha$ as $e\beta f \in K_\alpha$. Thus $x \in (KW)_\alpha$. Next let $x \in (KW)_\alpha$. Then $g\gamma x \in K_\alpha$ for some $\gamma \in \Gamma$ and $g \in E_\gamma$. Now for some $e \in E_\alpha$ $ea(g\gamma x) = (eag)\gamma x$ where $g\gamma x \in K_\alpha$ and $eag \in E_\gamma$. Thus $ep_K x$. Consequently $x \in (\ker \rho_K)_\alpha$. So $(\ker \rho_K)_\alpha = (KW)_\alpha$ for all $\alpha \in \Gamma$.
 Let $K \in N$ and suppose $a\gamma b' \in (KW)_\delta$ for some $b' \in V_\gamma^\delta(b)$. Then $e\alpha a\gamma b' \in K_\delta$ for some $\alpha \in \Gamma$ and $e \in E_\alpha$. Then for any $a' \in V_\theta^\phi(a)$, $a'\phi(e\alpha a\gamma b')\delta a \in K_\theta$ and $(a'\phi e\alpha a\gamma b')\theta a'\phi b = (a'\phi e\alpha a)\gamma b'\delta(a\theta a')\phi b \in K_\theta$. Thus $a'\phi b \in (KW)_\theta$. Conversely, suppose $a'\phi b \in (KW)_\theta$ for some $a' \in V_\theta^\phi(a)$. Then $f\beta(a'\phi b) \in K_\theta$ for some $\beta \in \Gamma$ and $f \in E_\beta$ and $a\theta(f\beta a'\phi b)\theta a' \in K_\phi$. Therefore for some $b' \in V_\gamma^\delta(b)$, $(a\theta f\beta a'\phi b\theta a')\phi(b\theta(a'\phi a))\gamma b' \in K_\delta$. Therefore $a\gamma b' \in (KW)_\delta$. Thus $a\gamma b' \in (KW)_\delta$ for some (all) $b' \in V_\gamma^\delta(b)$ iff $a'\phi b \in (KW)_\theta$ for some (all) $a' \in V_\theta^\phi(a)$. Interchanging roles of a and b we see that $b\theta a' \in (KW)_\phi$ for some (all) $a' \in V_\theta^\phi(a)$ iff $b'\delta a \in (KW)_\gamma$ for some (all) $b' \in V_\gamma^\delta(b)$. Moreover, the symmetric property of ρ_K shows that $a\gamma b' \in (KW)_\delta$ for some (all) $b' \in V_\gamma^\delta(b)$ iff $b\theta a' \in (KW)_\phi$ for some (all) $a' \in V_\theta^\phi(a)$. Thus we have the following.

LEMMA 2.4. For each $K \in N$, $ap_K b$ iff one of the following equivalent conditions hold.

- (i) $a\gamma b' \in (KW)_\delta$ for some (all) $b' \in V_\gamma^\delta(b)$.
- (ii) $b'\delta a \in (KW)_\gamma$ for some (all) $b' \in V_\gamma^\delta(b)$.
- (iii) $a'\phi b \in (KW)_\theta$ for some (all) $a' \in V_\theta^\phi(a)$.
- (iv) $b\theta a' \in (KW)_\phi$ for some (all) $a' \in V_\theta^\phi(a)$.

Let \bar{N} denote the collection of all closed families in N , then $\bar{N} \subseteq N$.

THEOREM 2.5. The mapping $K \rightarrow \rho_K = \{(a, b) \in S \times S : a\gamma b' \in K_\delta \text{ for some } b' \in V_\gamma^\delta(b)\}$ is a one to one order preserving mapping of \bar{N} onto the set of Γ -group congruences on S .

PROOF. Let ρ be a Γ -group congruence on S . Let us denote $\ker \rho$

by K and $(\ker \rho)_\alpha$ by K_α . Then $K_\alpha = \{x \in S : xpe \text{ when } e \in E_\alpha\}$. Then $E_\alpha \subseteq K_\alpha$.

Let $a \in K_\alpha$, $b \in K_\beta$ then ape and bpf where $e \in E_\alpha$ and $f \in E_\beta$. Now $(aab)\rho = (ap)(a(b\rho)) = (ep)(af\rho) = fp$. Thus $aabpf$, where $f \in E_\beta$. Thus $aab \in K_\beta$. Similarly $a\beta b \in K_\alpha$. Next let $a' \in V_\alpha^\beta(a)$ and $c \in K_\gamma$. Then cpg where $g \in E_\gamma$. Then $(a\alpha c\gamma a')\rho = (ap)(a(c\rho)\gamma(a'\rho)) = (ap)(a((g\rho)\gamma(a'\rho))) = (ap)(a(a'\rho)) = (a\alpha a')\rho$. Thus $a\alpha c\gamma a' \rho a\alpha a'$ where $a\alpha a' \in E_\beta$. Hence $a\alpha c\gamma a' \in K_\beta$. Similarly $a\gamma c\alpha a' \in K_\beta$. Therefore K is a normal family of subsets of S . Next $(KW)_\gamma = \{x \in S : eax \in K_\gamma \text{ where } e \in K_\alpha \text{ for some } \alpha \in \Gamma\}$. Then $K_\gamma \subseteq (KW)_\gamma$. To show $(KW)_\gamma \subseteq K_\gamma$, let $x \in (KW)_\gamma$. Then $eax \in K_\gamma$ for some $\alpha \in \Gamma$ and $e \in K_\alpha$. Consequently $(eax)\rho = go$ where $g \in E_\gamma$ or, $(ep)(a(x\rho)) = go$ or, $x\rho = go$ or, $x \in K_\gamma$. Thus $(KW)_\gamma \subseteq K_\gamma$.

Therefore $K = KW$ and so $K = \ker \rho \in \bar{N}$. Thus if ρ is a Γ -group congruence, then $\ker \rho = K \in \bar{N}$. We shall now prove that $\rho_K = \rho$. If $(a, b) \in \rho_K$, then $a\gamma b' \in K_\delta$ for some $b' \in V_\gamma^\delta(b)$. Thus $a\gamma b' \rho h$ for some $h \in E_\delta$ and $ap = (ap)\gamma((b'\delta b)\rho) = (hp)\delta(b\rho) = bp$. Thus $\rho_K \subseteq \rho$. Conversely, if $(a, b) \in \rho$ and $b' \in V_\gamma^\delta(b)$, then $a\gamma b' \circ b\gamma b' \in E_\delta$ and so $(a, b) \in \rho_K$. Therefore $\rho = \rho_K$. Thus from above and by lemma 2.3 for any $K \in \bar{N}$, $K \rightarrow \rho_K$ is a one-to-one mapping from \bar{N} onto the set of all Γ -group congruences on S . Also it is easy to see that $K \rightarrow \rho_K$ is an order preserving mapping.

Let τ be a Γ -group congruence on S , by the proof of Theorem 2.5 $\tau = \rho_K$, where $K = \ker \tau \in \bar{N}$. Thus each Γ -group congruence is of the form ρ_K for some $K \in \bar{N} \subseteq N$.

Thus by lemma 2.3 we have,

THEOREM 2.6. The least Γ -group congruence σ on S is given by $\sigma = \rho_U$ and $\text{ker } \sigma = UW$.

THEOREM 2.7. For any Γ -group congruence ρ_K with K in N , on a regular Γ -semigroup, the following are equivalent.

- (i) $a\rho_K b$.
- (ii) $a\mu x\gamma b' \in K_\delta$ for some $x \in K_\mu$ ($\mu \in \Gamma$) and some (all) $b' \in V_Y^\delta(b)$.
- (iii) $a'\phi x\mu b \in K_\theta$ for some $x \in K_\mu$ ($\mu \in \Gamma$) and some (all) $a' \in V_\theta^\phi(a)$.
- (iv) $b\mu x\theta a' \in K_\phi$ for some $x \in K_\mu$ ($\mu \in \Gamma$) and some (all) $a' \in V_\theta^\phi(a)$.
- (v) $b'\delta x\mu a \in K_Y$ for some $x \in K_\mu$ ($\mu \in \Gamma$) and some (all) $b' \in V_Y^\delta(b)$.
- (vi) $a\alpha e = f\beta b$ for some $\alpha, \beta \in \Gamma$ and some $e \in K_\alpha$, $f \in K_\beta$.
- (vii) $e\alpha a = b\beta f$ for some $\alpha, \beta \in \Gamma$ and some $e \in K_\alpha$, $f \in K_\beta$.
- (viii) $K_\beta\beta a\alpha K_\alpha \cap K_\beta\beta b\alpha K_\alpha \neq \emptyset$ for some $\alpha, \beta \in \Gamma$.

PROOF. (ii) \Rightarrow (iii) Suppose $a\mu x\gamma b' \in K_\delta$ for some $x \in K_\mu$ and $b' \in V_Y^\delta(b)$. Then for any $a' \in V_\theta^\phi(a)$, $a'\phi(a\mu x\gamma b')\delta b = (a'\phi a)\mu(x\gamma(b'\delta b)) \in K_\theta$ as $a'\phi a \in K_\theta$ and $x\gamma(b'\delta b) \in K_\mu$.

(iii) \Rightarrow (vi) Let $a'\phi x\mu b \in K_\theta$ for $a' \in V_\theta^\phi(a)$ and $x \in K_\mu$.

Then $a\theta(a'\phi x\mu b) = (a\theta a'\phi x)\mu b$ which is (vi) as $a'\phi x\mu b \in K_\theta$ and $a\theta a'\phi x \in K_\mu$.

(vi) \Rightarrow (viii) Let $a\alpha e = f\beta b$ for some $\alpha, \beta \in \Gamma$ and $e \in K_\alpha$, $f \in K_\beta$. Then we have

$f\beta a\alpha e = f\beta f\beta b$ implying $K_\beta\beta a\alpha K_\alpha \cap K_\beta\beta b\alpha K_\alpha \neq \emptyset$.

(viii) \Rightarrow (ii) Let $K_\beta\beta a\alpha K_\alpha \cap K_\beta\beta b\alpha K_\alpha \neq \emptyset$. Then $x\beta a\alpha y = x_1\beta b\alpha y_1$ for some $x, x_1 \in K_\beta$, $y, y_1 \in K_\alpha$. If $a' \in V_\theta^\phi(a)$, $b' \in V_Y^\delta(b)$, then $a'\phi x\beta a \in K_\theta$ and $(a'\phi x\beta a)\alpha y \in K_\theta$ and we have, $a\theta(a'\phi x\beta a)\gamma b' = (a\theta a')\phi(x\beta a)\gamma b' = (a\theta a')\phi(x_1\beta b\alpha y_1)\gamma b' = (a\theta a')\phi x_1\beta(b\alpha y_1\gamma b') \in K_\delta$ as $b\alpha y_1\gamma b' \in K_\delta$, $x_1\beta(b\alpha y_1\gamma b') \in K_\delta$ and $a\theta a' \in K_\phi$.

Thus (ii), (iii), (vi) and (viii) are equivalent.

Interchanging the roles of a and b we see that (iv), (v), (vii) and (viii) are equivalent. Also (i) and (vi) are equivalent by Theorem 2.1. Thus all the conditions (i) - (viii) are equivalent.

COROLLARY 2.8. Let σ denote the least Γ -group congruence on a regular Γ -semigroup S . Then the following are equivalent.

- (i) $a\sigma b$.
- (ii) $a\mu x\gamma b' \in U_\delta$ for some $x \in U_\mu$ ($\mu \in \Gamma$) and some (all) $b' \in V_Y^\delta(b)$.
- (iii) $a'\phi x\mu b \in U_\theta$ for some $x \in U_\mu$ ($\mu \in \Gamma$) and some (all) $a' \in V_\theta^\phi(a)$.
- (iv) $b\mu x\theta a' \in U_\phi$ for some $x \in U_\mu$ ($\mu \in \Gamma$) and some (all) $a' \in V_\theta^\phi(a)$.
- (v) $b'\delta x\mu a \in U_Y$ for some $x \in U_\mu$ ($\mu \in \Gamma$) and some (all) $b' \in V_Y^\delta(b)$,
- (vi) $a\alpha e = f\beta b$ for some $\alpha, \beta \in \Gamma$ and $e \in U_\alpha$, $f \in U_\beta$.
- (vii) $e\alpha a = b\beta f$ for some $\alpha, \beta \in \Gamma$ and $e \in U_\alpha$, $f \in U_\beta$.
- (viii) $U_\beta\beta a\alpha U_\alpha \cap U_\beta\beta b\alpha U_\alpha \neq \emptyset$ for some $\alpha, \beta \in \Gamma$.

ACKNOWLEDGEMENT. I express my earnest gratitude to Dr. M.K. Sen, Department of Pure Mathematics, University of Calcutta, for his guidance and valuable suggestions. I also thank C.S.I.R. for financial assistance during the preparation of this paper. I am also grateful to the learned referee for his valuable suggestions for the improvement of this paper.

REFERENCES

1. SEN, M.K. and SAHA, N.K., On Γ -semigroup-I. Bull. Cal. Math. Soc., 78 (1986), 180-186.
2. SEN, M.K. and SAHA, N.K., Orthodox Γ -semigroup. Internat. J. Math. & Math. Sci., to appear.

Special Issue on Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from "Qualitative Theory of Differential Equations," allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the *Mathematical Problems in Engineering* aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King's College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk