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ABSTRACT. In this article, the Hall planes of even order q2 are characterized as translation

planes of even order q2 admitting a Baer group of order q and at lecast q+1 nontrivial
elations.
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1. INTRODUCTION AND BACKGROUND.

Let ¥ denote an affine Desarguesian plane of order q2 coordinatized by a field F
isomorphic to GF(q2). Let & denote the net defined on the points of ¥ whose lines have
slopes in GF(q) U (w). Let o denote the involution defined by (x,y) — (x%,y9) where

xy € F. Let F* denote the kernel homology group of ¥ defined by (x,y) — (ax,ay) where
|a] =q+1, a€F.

Now derive 4 to obtain the Hall plane ¥ of order q2. Then the involutions in
(a)F* are central collineations in .

If & denotes an elation group fixing a= (0,0) with axis .# in 4 which acts
regularly on the remaining lines of .#° incident with « then & becomes a collineation group
of ¥ of order q which fixes a Baer subplane pointwise.

In [3] and [4], Foulser and Johnson classify the translation planes of order q2 that
admit SL(2,q). In particular, if q2 > 16, the Hall planes are precisely the translation planes
admitting SL(2,q) where the Sylow p—subgroups for q = p" fix Baer subplanes pointwise.

So, the Hall planes of order q2 admit a Baer group of order q and at least 1+q
involutary central collineations.

In this article, we consider translation planes of order q2 that admit a Baer group of
order q and > 14q involutory central collineations. For q odd, it turns out that there are
other (i.e. non Hall) translation planes possessing this configuration of groups. For example,
the translation planes = corresponding to the Fisher flock of a quadratic cone in PG(3,q) for
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q=3 mod4 derive planes 7 admitting such groups (sce [5]).
However, for q even, we are able to characterize the Hall planes using these planar and
non planar involutions.

Our main result is

THEOREM A. Let 7 be a translation plane of even order q2 which admits a Bacr
collincation group @ of order q and at least 1+q nontrivial elations (all groups are assumed

to be in the translation complement). Then = is the Hall plane of order q.2 and conversely,
the Hall plane admits such groups.

The proof of theorem A will be given as a scries of lemmas. As a preliminary to the
proof, we remind the reader of some results required in the arguments.

RESULT I (JHA, JOHNSON (7] (4.1)). Let = be a translation planc of even order

q2 # 64. Assume 7 admits a Baer group of order q and a dihedral group of order 2(1+q)
which is generated by elations with affine axes. Then = is derivable where the clation axes
define a derivable partial spread.

RESULT II (FOULSER [2] THEOREM 2 AND COROLLARY 3 (2)). Let = bea

translation plane of order q2 that admits a Baer group & of order q. (1) Then the Bacr

subplane 0= Fix & pointwise fixed by # is Desarguesian. (2) Furthermore, if the

collineation group y[ﬂ, ] fixing ) pointwise has order > q then the net # defined by the
0

lines of ) is a derivable net. (3) In the general case, 7“ ] is a subgroup of AG(1,q), the
0

1—dimensional affine group over GF(q).

RESULT III (JHA, JOHNSON [7]). Let = be a translation planc of even order q2

that admits a Baer 2—group of order > 2y/q. Then an elation group with fixed affine axis has
order < 2.

RESULT IV (A MODIFIED VERSION OF THE MAIN RESULTS OF HERING (6],
OSTROM [10]). Let = be a translation plane of even order. Let % denote the collincation
group generated by all elations in the translation complement. If ¥ is solvable then cither ¥
is an elementary abelian 2—group or has order 2 - t where t is odd.

RESULT V (JHA-JOHNSON [8]). Let = be a translation plane of cven order q2

which admits collineation groups .ft?l, 32 of orders > 2y/q such that ‘ﬂi fixes a Bacr
subplane ] i=1,2 pointwise. If mn # Ty then 7 is Hall or a known plane of order 16.

2. THE CHARACTERIZATION.
Assume for this section, the assumptions of Theorem A and assume 7 is not Hall.

(2.1) LEMMA. Result I is valid for g2 = 64.
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PROOF. = is a translation plane of order 64 that admits a Bacr group @ of order 8
and > 148 affine elations. If 7 is not Hall then & still becomes dihedral of order 2 - 9 and
centralizes 2. Let # denote the cyclic stem of &. Let ¢ = (g). Thercare 8 - 7
components of 7 notin 4 so that g must fix at lcast two of thesc components .Zl, .2’2.
Now g leaves invariant 7, = Fix 3, .z'l and .22. Thus, g fixes >3 mutually disjoint

2m—spaces (if q =2™) over GF(2). Now the argument given by Jha—Johnson (7] for result

I will be valid for q2 = 64. This proves (2.1).

Now assume the order of the plane is 16. The translation planes of order 16 are cither
semifield planes or derived from semifield planes (sec Johnson [9] and Dempwolff and Ricfart
[1]). In any case, the non Hall planes admitting Baer groups of order 4 do not admit > 5
elations.

So, we may assume q # 4.

(2.2) LEMMA. Let & denote the collineation group generated by the affine elations.
Then & is dihedral of order 2(q+1), acts faithfully on T and centralizes 2.

PROOF. By result IV, no two of the elations can have a common axis. Hence, it
follows that & is solvable by result IV, |&| =2 -t where t is odd.

By result II, & must normalize #. Clearly, the elations must have axes nontrivially
intersecting s and leaving s invariant. Since a central collineation is uniquely dctermined
by its axis (co axis) and one specified nontrivial image point, it follows that & centralizes 3.
Hence, if y € 9n .2 — (1) then the Sylow 2—subgroups of & would have order > 4. So
InP=(1).

If 14he P fixes 7 pointwise then the collineation fixing 7y Ppointwise has order
> q so that by result II(2), the net 4 (see notation in I1(2)) is derivable.

Let m be a Baer subplane of 4 incident with the zero vector « The infinite points
of 7, are exactly those of e If o is any elation in & then the axis of ¢ isin 7 and ¢
permutes the infinite points of - Hence, o leaves mn invariant and since & is generated
by elations, it follows that & must fix each of the q+1 Baer subplanes of . incident
with « However, this means that h cannot fix Ly pointwise.

Thus, & acts faithfully on 7y Now m, is Desarguesian by result II(1) and sincc &
is generated by elations of 7, 9 < SL(2,q) ¥ PSL(2,q) and || =2 -t where t isodd.
Thus, & is dihedral and admits > 1+q involutions. This proves (2.1).

(2.3) LEMMA. r is derivable with derivable net & (in the above notation).

PROOF. (2.2 and result I).

(2.4) LEMMA. Let o be any elation in &. Then for any 7€ 2 — (1), 7o is a Bacr
involution. Furthermore, if p € @ — (1), p# r then the set of components of = not in 4
fixed by po is disjoint from the set of components not in 4 fixed by ro.

PROOF. If 7o is an elation then (7)o € P. But &n B = (1). Hence, 70 isa

Baer involution.
Let £ be a component fixed by both 7o and po. Then (70)(po) also fixes & and
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(ro)po = rpa2 =71p € @ fixes £. Thus £ is a component of 4.

(2.5) LEMMA. Let o be any elation in &. Then each component of 7 notin 4 is
fixed by exactly one Baer involution in o(2 — (1)).

PROOF. By (2.4), there are q(q—1) distinct components fixed by some involution in
a(B—(1)). Since there are exactly q(q—1) components not in 4, (2.5) is proved.

(2.6) LEMMA. Let & = (g,x) where o,x are distinct elations. Each component ¢
of r notin 4 is fixed by oy.

PROOF. By (2.5), there exists a Baer involution po € (@ — (1))o which fixes £ and
similarly, there is a Baer involution 7y in (& — (1))y which fixes Z.
Thus (po)(rx) also fixes £. However, (po)(rx) = (p7)(ox) by (2.1). Further,

((m)(ox))? = (p7)(o)* again by (2.1)) = (on)°
then (ox) = ((ax)2>. Thus, (zrx)2j and thus oy fixes 2.

. Since |{oy)| = q+1 and q+1 is odd,

(2.7 LEMMA. Let % denote the translation plane obtained from 7 by deriving 4.

Then 22 is a collineation group of .
PROOF. P2 leaves . invariant.

(2.8) LEMMA. Let € denote the cyclic stem of & of order q+1. Then ¥ isa

kernel homology group of 7.

PROOF. It was noted in the proof to (2.1) that & must fix each Baer subplane
incident with « in 4. Hence, the stem ¢ of & must fix each such Baer subplane. The

components of 7 are the components of r not on # and the Baer subplancs of # which
are incident with <. By (2.6),if & = (o,x) then € = (o)) so that ¥ fixes each

component of 7 not in 4. Thus, ¥ must induce a kernel homology group in 7.

Let the kernel of % be isomorphic to GF(2") < GF(q2). Let q=2™ sothat r|2m.
then 1+q | 2°—1 by (2.7). Thus, r > m so that r = 2m.

Thus, the kernel of 7 is isomorphic to GF(q2) so that 7 is Desarguesian. Thus, =

must be Hall and we obtain the proof to theorem A.
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