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ABSTRACT. This paper describes a variational approach for computing eigenvalues of a
two point boundary value problem associated with coupled second order equations to which
a fourth order linear differential equation is reduced. An attractive feature of this
approach is the technique of enforcing the boundary conditions by the variational func-

tional. Consequently, the expansion functions need not satisfy any of them.
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1. INTRODUCTION.
In a number of papers finite difference methods have been used to solve the fourth

order linear differential equation:
y) & [p(x) - Aa(x) 1y =0 (1.1)

subject to one of the following pairs of homogeneous boundary conditions:

y(a) = y'(a) =0, y(b) =y'(b) =0 (1.2a)
y(a) = y"(a) =0, y(b) =y"(b) =0 (1.2b)
y(a) =y'(a) =0, y"(b)=y"(b)=0 (1.2¢)

In (1.1), the functions p(x),q(x) €C[a,b] and they satisfy the conditions
p(x) 2 0, q(x) >0, x € [a,b]. (1.3)

Such boundary value problems occur frequently in applied mathematics, modern physics and
engineering,see [1,2,3,4].

Chawla and Katti [5] have developed a finite difference method of order 2 for computing
approximate values of A for a boundary value problem (1.1) - (1.2a). For the same problem,
a fourth order method is developed by Chawla [6] which leads to a generalized seven -
band symmetric matrix eigenvalue problem. More recently, Usmani [7] has presented finite
differnce methods for (1.1) - (1.2b) and (1.1) - (1.2c) which lead to generlized five-band

and seven-band symmetric matrix eigenvalue problem.

In the present paper we follow a different approach. We reduce the fourth order
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equation (1.1) to two coupled second order equations as follows:

Let f(x) = y"(x) (1.4)

The problem (1.1) can now be written as
£" + [p(x) - da(x)]y = 0 (1.5a)
y"-£=0 (1.5b)

The associated boundary conditions (1.2) can be written in this case as:

y(a) = y'(a) =0, y(b) =y'(b) =0 (1.6a)
y(a) = y(b) =0, f(a) = f(b) =0 (1.6b)
y(a) = y'(a) =0, f(b) = £'(b) =0 (1.6c)

In the nert section we propose a variational priciple for the solution of (1.5) and
(1.6) with the following attractive features:
I. The proposed functional is a general one in the sense that it solves (1.5) and any
pair of associated boundary conditions (1.6).
iI. The boundary conditions are enforced via suitable terms in the functional and hence
the expansion (trial) functions need not satisfy any of them.
III. The variational technique employed leads to stable calculations and to a high con-

vergence rate.

2. A FUNCTIONAL EMBODYING ALL THE BOUNDARY CONDITIONS.

In this section we produce the functional:

1 D i o2 2
A(u,v) = —7;——————-{ (2u'v' + pv4 - u%) dx

qudx a

a
+ 2a;[v(b)u'(b) - v(a)u'(a)]
+ 2a;[u(b)v'(b) - u(a)v'(a)]
+ 203 u(b)v'(b) - u'(a)v(a)]} (2.1)
which incorporates the boundary conditions (1.6). The parameters ai, a2, and 03 are set

equal to either 1 or O depending on which pair of the boundary conditions (1.6) is taken
with (1.5).

Theorem]. The functional (2.1) is stationary at the solution of (1.5)-(1.6a), where for
this pair of boundary conditions @, is set equal to 1; a2 =0a3=0.

Proof. Let

b
Glu,v,A] = J [-2u'v' + (p - Aq)v2 - u?] dx
a

+ 2[v(b)u'(b) - v(a)u'(a)] =0 (2.2)

and let vi=y+ Sy , A, = A+ 68X, u = f. Then
1

b
G[u,vl,xvl] = J [-2£'8y"' + 2(p - Aq)ydy - 26Aqy2]dx
a

+ 2[8y(b)E'(b) - Sy(a)f'(a)] = O (2.3)

But b b
["aereyrax - |7 2rmsy ax - 208y €7 (0 ~ sy(@)E" @) (2.4)

a a



VARIATIONAL FORMALISM FOR THE EIGENVALUES 731
Upon substituting (2.4) in (2.3) and using (l.5a), we get

b
G[u,vl,A ] = —ZGAI qy dx = 0
v -
Hence, 6\ = 0 to 0||8y]|.

In an identical manner, it can be shown that §A = O to O||8f]|. Thence, the equation
Glu,v,A] = 0 does not change to the first order in 8y and &f. [his establishes the val-
idity of A(u,v) as a functional for this problem.
Theorem2. The functional (2.1) is stationary at the solution of (1.5)-(1.6b), where for
this pair of boundary conditions we set a; =0, =1andaz =0.
Theorem3. The functional (2.1) is stationary at the solution of (1.5)-(1.6c¢), where for
this pair of boundary conditions we set a; =0, =0andaz=1.
The proof of theorem2 and Theorem3 Parallel that of theoreml and, therefore, are omitted.
3. MATRIX SET-UP.
Let N N
£ = fy(0) =) ah(x), y(x) = yp(x) = 'Z b;h,(x), xe[a,b] (3.1)
i=1 i=1

Inserting (3.1) into the functional (2.1) and finding the stationary value of the func-

tional leads to the 2x2 block matrix equation

-~

)
|

(=)
'
o

= A (3.2)

(0]
-3
|
(@]
[e)
|

where ¥ = D + S1 + 82 + 53 and where

b

b b b
- _ [N _ - _ =
Dij = Ia hi hj dx , Qij = Ia phihj dx , Oij = Ia hth. dx , Eij Ja qhth. dx
(3.3)

The matrices SI'SZ and S3 are contributions from the boundary terms with elements

(8); 5 = aalhj(0)hy (b) = h (a)hj(a)]
(S);§ = ez [h; (DhI(b) - hy(adhi(a)]
(53); 5 = @alhy (DR(B) = hi(a)hi(a)]

If,for example, we consider (1.5) with boundary conditions as given in (1.6a), then

S2 and S3 will be null since in this case we set a; = 1 and a,=a3=0.

In order not to introduce artificial singularities in the matrix D and for stability

reasons (see mikhlin [8]), we choose in (3.1):
h,() =1, h () =x,h()=0-0DT(0), i=1,2,...N3 (3.4)

where for convenience, we number the basis functions from -2 to N-3 and where the Ti(x)
are chebyshev polynomials of the first kind; o is a linear map of x onto [-1,1].
4. EFFICIENT CALCULATIONS.

To calculate the elements of the matrices D and O in (3.3), we need the following:

2.k
Bék)=2/nf1 -x Ty gy

—— (4.1)
1V ox2
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From the relation:

2y 1
(1-x7) =3 (T0 - T2) (4.2)
and the chebyshev polynomials orthogonality properties:
1 2.1 0O forng#m
J (1-xY2T T dx=(n forn=m=0 (4.4)
-1 nm
myp for n = m ¢ 0
we find that 1 if 8 =0
B,(Ll)=[-% if £ =2 (4.3)
0 otherwise
Now Bék), k 22 can be related to Bgl) by the following:
(k) _ 1 (k-1)  gk-1) (k-1) 4
By = al-Bgp T+ g - Ble-2| ! (4.4)
This follows from (4.1), (4.2) and the chebyshev relations
= = 4.5
TnTm 3 [Tn+m + Tn-m ] and T_, = T, (4.5)

1
Similarly, the half-integers B§S+’), can easily be related to Bés) by the following:

(s+}) (s) _ 9 1 (s) (s)
By = 2mly T - ) Byl + Blam g (4.6)
which follows from (4.1), (4.5) and the well known chebyshev expansion:
23 ® 2
(1-x")Y = 2/n (1 - T ) (4.7)
mz=l 4m2 - 1 Zm

At this stage, the elements of the matrices @ and D in (3.3) can br related to B§s+*)
as follows: Assume, without loss of generality, that [a,b] = [-1,1], then

Theorem 3, The elements Oij are given by

) (5/2) . (5/2)y . ..
OlJ = _('"/4)[81":] + B]l—J']' 1,]=2 0
053 =035 03,01 =72/3,0,) =00, ,=-2,
y (3/2) (4.8)
- (3/2) .
05,01 = ~(MAYIBi " + By 1,120
o, = -8, szo0.
Proof. For i,j 2z O, Oij can be written in the form
o j'l 1327 (0T (x) dx (5.9)
ij~ PN
1] -1 (1-x2)2

The result then follows from (4.1) and (4.5) and the orthogonality relations of the
Chebyshev polynomials; and similarly for the first two rows and columns of O.

In the same manner, the elements of the matrix D in (3.3) can be related to B£s+%) using
the identity

L4 [O=DT )] = HG-DT, [ (x) - (42T, (0)] (4.10)
dx

The elements of the matrices  and £ require a slightly differet treatment due to the

I

presence of the function p(x) in Qij and q(x) in Ei
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llere we require the expansion
oo

1=x% p(x) = 7' (%) (4.11)
Y=OY Y
and similarly for the function q(x). We assume that Fast Fourier Transform techniques are

used to approximate ago), Yy = 0,1,...,N-1 via the scheme

1
a{® - (2/n)J OO, (0/(1xD) ) ax (4.12)
-1
T mr my™m
= (2/n)} p(cos —)cos(—+), nzN (4.13)
=0 n n
and that we approximate a(0)= 0, vy 2 N whencver these coefficients appear. It is not
difficult to show that the coefficients csh) and u§h+%), hz1 are related to a$0) by

1
relations identical to (4.4) and (4.6). The elements of the matrix 2 are related to a(h+5)

(and similarly for the elements of £ in terms of the expansion coefficients of q(x)), in

a manner that parallels that of theorem3 and details are omitted.

5. THE STURM - LIOVIILE PRULLE!.
To test the formalism itroduced in this paper numerically, we take the second order
version of problem (1.1) by considering the solution of the following regular Sturm-Liov-

ille problem:

[r()y'} + (p(x) - q(x))y = 0 x ela,b] (5.1)
subject to
y(a) = 7(b) = 0 (5.1a)
An appropriate functional f£or :%is nroviem is :
A(w) = N(w)/M(w) (5.2)

where, b 9
N(w) = J (w'r(x)w' + q(x)w?) dx + 2[w(b)r(b)w'(b) - w(a)r(a)w'(a)]
a

b
M(w) = J p(x)wzdx

a

The proof of the validity of this functional parallels that of theoreml and, therefor, is
omitted. Next, let N
y(x) = yy(x) = ) z;h. (%), x € [a,b] (5.3)
i=1 t 1

Substituting yN(x) for w(x) in (5.2) and finding the stationary value of

the functional leads to the symmetric matrix eigenvalue problem:

(H+ AB) =0 (5.4)
where, b
Bij = J hip(x)hidx , H = R + S. The elements of the matrices
a

R and S are given by:

b
I [h;r(x)hg + hiq(x)hj]dx

R, .
ij A

Sij -[hi(b)r(b)ha(b) - hi(a)r(a)hé(a)]
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To apply the technique presented in this paper, we consider the numerical solution of
problem (5.1) where we choose r(x)=1, p(x) =%, q(x)=0 and [a,b] =[0,7]. In this case
problem (5.1) has a theoretical eigenvalue A=2. With basis (3.4), we obtain from a one
dimensional program an excellent approximation to the eigenvalue using inverse iterations.
Searching for the eigenvalue closest to 1 and using a zero starting value with the num-
ber of expansion functions N=7, it took the program only three iterations to produce an
approximated eigenvalue with an error of order 10'8. This shows that the variational
principle derived here gives an attractive extension of the global variational method to
the eigenvalue problems. Th= technique avoids the need to search for trial functions

that must satisf the boundary conditions since searching for such trial functions has

proven, in many cases, to be technically complicated.
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