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ABSTRACT. Let R be a commtative ring with unity. In this paper, we prove that R is
an almost PP-PM-ring if and only if R is an exchange PF-ring. Let X be a completely
regular Hausdorff space, and let BX be the Stoune Cch compactification of X. Then we
prove that the ring C(X) of all continuous real valued functions on X is an almost PP-
ring if and only if X is an F-space that has an open basis of clopen sets. Finally,
we deduce that the ring C(X) is an almost PP-ring if and only if C(X) is a U-ring,
i.e. for each f €C(X), there exists a unit u € C(X) such that f = u|f|.
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1. INTRODUCTION.

All rings considered in this paper are commutative with unity. Recall that R is
called a PF-ring if every principal ideal aR is a flat R-module, and it is called a
PP-ring if every principal ideal aR is a projective R-module. An ideal I of a ring R
is called pure if for each x &€ I, there exists y€ I such that xy = x. It is well-known

that R is a PF-ring if and only if for a €R, annihilator ideal, ann(a) , is pure, see
R
Al-Ezeh [1]. Also it is well-known that R is a PP-ring if for each a€ R,ann(a)
R

is generated by an idempotent. In an earlier paper we introduced almost PP-rings as a
generalization of PP-rings. A ring R is called an almost PP-ring if for each a &R,

ann(a) is generated by idempotents of R. In fact, one can easily show that R is an
R
almost PP-ring if and only if for each a €R and b€ ann(a), there exists an idempotent
R

e in ann(a) such that be = b.
R
A ring R is called an exchange ring if every element in R can be written as the

sum of a unit and an idempotent. Exchange rings have been studied extensively, see

for example Monk [2] and Johnstone [3]. Our aim in this paper 1s to study the
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relationship between exchange PF-rings and almost PP-rings. To carry out our study we
need two more definitions. A ring R is called a PM-ring if every proper prime ideal
of R is contained in a unique maximal ideal of R. it is well-known that the ring of
all continuous real valued functions over a completely regular Hausdorff space X,
C(X), is a PM-ring, see Gillman and Jerison [4]. A compact Hausdorff and totally

disconnected space is called a Boolean (or Stone) space.

2. MAIN RESULTS.
First, we state a theorem that was proved by Johnstone [3].
THEOREM 2.1 A ring R is an exchange ring if and only 1f it is a PM-ring and the
space of maximal ideals of R, Max(R), is a Boolean space.
THEOREM 2.2 Let R be an exchange PF-ring. Then it is an almost PP. PM-ring.
PROOF. Let R be an exchange PF-ring. Let a €R, and let b€&ann(a). Since R is a
R
PF-ring, there exists c € ann(a) such that bc = b. Because R is an exchange ring,
R
c=etu, where ez-e and u is a unit in R. Hence cu 1. eu  + 1, and so

.

1 -e= cu-l(l - e). Since ac = 0, a(l - e) = 0. But bc = b, so b(l - e) = ub since ¢
= e + u. Therefore bu-'l (1 - e) =b. Consequently,

b(l - e) = bcu -1 (1 -e) = bu—l(l -e) =b., Since 1 - e €ann(a), R is an almost
R
PP-ring. By Theorem 1, R is a PM-ring. Hence R is an almost PP-PM-ring.

Now we want to establish the converse of theorem 2.2. Clearly, every almost PP-
ring is a PF-ring. So, by theorem 2.1, it is enough to show that the space of maximal
ideals of R, Max(R), is a Boolean space. De Marco and Orsatti [5] proved that {if R is
a PM-ring, then Max(R) is a compact Hausdorff space. So it is left to show that for
an almost PP-PM-ring R, Max(R) is totally separated. That is for any two distinct
maximal ideals M and Hl there exists a clopen set in Max(R) containing M but not M

THEOREM 2.3 Let R be an almost PP-PM-ring. Then R is an exchange PF-ring.

PROOF. By the above arguement, R is a PF-PM-ring. Moreover, Max(R) is a compact
Hausdorff space. Let Ml’ MzéMax(R) and Ml # Mz. Since R is a PM-ring, there
exist ag Ml and be¢ M2 such that ab = 0, see Contessa [6]. Because R is an almost PP-

1

ring, there exists an idempotent e ann(b) such that ea=a. Therefore e‘Ml
R
and eéﬂz. Since e is an idempotent, U=D(e)= {M€ Max(R): e €M} is a clopen set in

Max(R) containing Ml but not MZ. So, by theorem 2.1, R is an exchange PF-ring.

For a completely regular Hausdorff space X, the ring of all continuous real
valued functions, C(X), is a PM-ring, see Gillman and Jerison [4]. Moreover,
Max(C(X)), is homeomorphic to B, the St one-Ce ch compatification of X. Therefore C(X)
is an almost PP-ring if and only if R is an exchange PF-ring. Consequently, C(X) is
an almost PP-ring if and only if it is a PF-ring and #X is a Boolean space. Al-Ezeh
et al [7], proved that C(X) is a PF-ring if and only if X is an F-space, where X is
called an F-space if every finitely generated ideal 1is principal. It is well-known

that X 1is an F-space if and only if any two nonempty disjoint cozero sets are
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completely separated. Therefore, the ring C(X) is an almost PP-ring if and only if X
is an F-space and 3 X is a Boolean space. In fact, BX is a Boolean space if and only
if X has an open basis of clopen sets. Thus the ring C(X) is an almost PP-ring if and
only if X is an F-space that has an open basis of clopen sets.

Finally, Gillman and Henriksen [8] defined the ring C(X) to be a U-ring if for
every f €C(X), there exists a unit u €C(X) such that f = u|f|. In the same paper they
proved that the ring C(X) is a U-ring if and only if X is an F-space and B is a
Boolean space. So we get the following theorem.

THEOREM 2.4 The ring C(X) is an almost PP-ring if and only if it is a U-ring.

We end this paper by giving some examples illustrating the relationships
discussed above.

EXAMPLES.

1) Let N be the set of positive integers with the discrete topology. Let BN be
its Stone—\C,ech compactification. The space AN\N is a compact F-space, see Gillman
and Jerisen [4]. Moreover, RN\N is totally disconnected. Hence, the space ARN\N
is Boolean. So the ring C(BAN\N) is an almost PP-ring. However, it is not a PP-ring
‘because the space M\N is not basically disconnected, see Brookshear [9].

2) Let R+ be set of nonnegative reals endowed with the usual topology. The
space BR+\ R+ is a compact, connected F-space, see Gillman and Henriksen [8]. Thus,
the ring C(X) has no nontrivial idempotents. So, if it were an almost PP-ring, it
would be an integral domain which is not the case because it has plenty of zero
divisors. Consequently, C( BR+\R+) is a PF-rings that is not an almost PP-ring.

3) The ring of integers is an almost PP-ring that is not a PM-ring, and so not an

exchange ring.
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