

EXCHANGE PF-RINGS AND ALMOST PP-RINGS

H. AL-EZEH

Department of Mathematics
University of Jordan
Amman, Jordan

(Received June 1, 1988 and in revised form August 11, 1988)

ABSTRACT. Let R be a commutative ring with unity. In this paper, we prove that R is an almost PP-PM-ring if and only if R is an exchange PF-ring. Let X be a completely regular Hausdorff space, and let βX be the Stone \check{C} ech compactification of X . Then we prove that the ring $C(X)$ of all continuous real valued functions on X is an almost PP-ring if and only if X is an F-space that has an open basis of clopen sets. Finally, we deduce that the ring $C(X)$ is an almost PP-ring if and only if $C(X)$ is a U-ring, i.e. for each $f \in C(X)$, there exists a unit $u \in C(X)$ such that $f = u|f|$.

KEY WORDS AND PHRASES. PF-ring, PP-ring, PM-ring, almost PP-ring, pure ideal, exchange ring, idempotents, Stone-Cech compactification, Boolean space and the ring of all continuous real valued functions over a space X , $C(X)$.

1980 AMS SUBJECT CLASSIFICATION CODES. Primary 13C13, Secondary 54C40.

1. INTRODUCTION.

All rings considered in this paper are commutative with unity. Recall that R is called a PF-ring if every principal ideal aR is a flat R -module, and it is called a PP-ring if every principal ideal aR is a projective R -module. An ideal I of a ring R is called pure if for each $x \in I$, there exists $y \in I$ such that $xy = x$. It is well-known that R is a PF-ring if and only if for a $\in R$, annihilator ideal, $\text{ann}(a)$, is pure, see Al-Ezeh [1]. Also it is well-known that R is a PP-ring if for each $a \in R$, $\text{ann}(a)$ is generated by an idempotent. In an earlier paper we introduced almost PP-rings as a generalization of PP-rings. A ring R is called an almost PP-ring if for each $a \in R$, $\text{ann}(a)$ is generated by idempotents of R . In fact, one can easily show that R is an almost PP-ring if and only if for each $a \in R$ and $b \in \text{ann}(a)$, there exists an idempotent e in $\text{ann}(a)$ such that $be = b$.

A ring R is called an exchange ring if every element in R can be written as the sum of a unit and an idempotent. Exchange rings have been studied extensively, see for example Monk [2] and Johnstone [3]. Our aim in this paper is to study the

relationship between exchange PF-rings and almost PP-rings. To carry out our study we need two more definitions. A ring R is called a PM-ring if every proper prime ideal of R is contained in a unique maximal ideal of R . It is well-known that the ring of all continuous real valued functions over a completely regular Hausdorff space X , $C(X)$, is a PM-ring, see Gillman and Jerison [4]. A compact Hausdorff and totally disconnected space is called a Boolean (or Stone) space.

2. MAIN RESULTS.

First, we state a theorem that was proved by Johnstone [3].

THEOREM 2.1 A ring R is an exchange ring if and only if it is a PM-ring and the space of maximal ideals of R , $\text{Max}(R)$, is a Boolean space.

THEOREM 2.2 Let R be an exchange PF-ring. Then it is an almost PP-PM-ring.

PROOF. Let R be an exchange PF-ring. Let $a \in R$, and let $b \in \text{ann}(a)$. Since R is a PF-ring, there exists $c \in \text{ann}(a)$ such that $bc = b$. Because R is an exchange ring, $c = e + u$, where $e^2 = e$ and u is a unit in R . Hence $cu^{-1} = eu^{-1} + 1$, and so $1 - e = cu^{-1}(1 - e)$. Since $ac = 0$, $a(1 - e) = 0$. But $bc = b$, so $b(1 - e) = ub$ since $c = e + u$. Therefore $bu^{-1}(1 - e) = b$. Consequently, $b(1 - e) = bcu^{-1}(1 - e) = bu^{-1}(1 - e) = b$. Since $1 - e \in \text{ann}(a)$, R is an almost PP-ring. By Theorem 1, R is a PM-ring. Hence R is an almost PP-PM-ring.

Now we want to establish the converse of theorem 2.2. Clearly, every almost PP-ring is a PF-ring. So, by theorem 2.1, it is enough to show that the space of maximal ideals of R , $\text{Max}(R)$, is a Boolean space. De Marco and Orsatti [5] proved that if R is a PM-ring, then $\text{Max}(R)$ is a compact Hausdorff space. So it is left to show that for an almost PP-PM-ring R , $\text{Max}(R)$ is totally separated. That is for any two distinct maximal ideals M and M_1 there exists a clopen set in $\text{Max}(R)$ containing M but not M_1 .

THEOREM 2.3 Let R be an almost PP-PM-ring. Then R is an exchange PF-ring.

PROOF. By the above argument, R is a PF-PM-ring. Moreover, $\text{Max}(R)$ is a compact Hausdorff space. Let $M_1, M_2 \in \text{Max}(R)$ and $M_1 \neq M_2$. Since R is a PM-ring, there exist $a \in M_1$ and $b \in M_2$ such that $ab = 0$, see Contessa [6]. Because R is an almost PP-ring, there exists an idempotent $e \in \text{ann}(b)$ such that $ea = a$. Therefore $e \notin M_1$ and $e \in M_2$. Since e is an idempotent, $U = D(e) = \{M \in \text{Max}(R) : e \in M\}$ is a clopen set in $\text{Max}(R)$ containing M_1 but not M_2 . So, by theorem 2.1, R is an exchange PF-ring.

For a completely regular Hausdorff space X , the ring of all continuous real valued functions, $C(X)$, is a PM-ring, see Gillman and Jerison [4]. Moreover, $\text{Max}(C(X))$, is homeomorphic to βX , the Stone-Čech compactification of X . Therefore $C(X)$ is an almost PP-ring if and only if R is an exchange PF-ring. Consequently, $C(X)$ is an almost PP-ring if and only if it is a PF-ring and βX is a Boolean space. Al-Ezeh et al [7], proved that $C(X)$ is a PF-ring if and only if X is an F-space, where X is called an F-space if every finitely generated ideal is principal. It is well-known that X is an F-space if and only if any two nonempty disjoint cozero sets are

completely separated. Therefore, the ring $C(X)$ is an almost PP-ring if and only if X is an F-space and βX is a Boolean space. In fact, βX is a Boolean space if and only if X has an open basis of clopen sets. Thus the ring $C(X)$ is an almost PP-ring if and only if X is an F-space that has an open basis of clopen sets.

Finally, Gillman and Henriksen [8] defined the ring $C(X)$ to be a U-ring if for every $f \in C(X)$, there exists a unit $u \in C(X)$ such that $f = u|f|$. In the same paper they proved that the ring $C(X)$ is a U-ring if and only if X is an F-space and βX is a Boolean space. So we get the following theorem.

THEOREM 2.4 The ring $C(X)$ is an almost PP-ring if and only if it is a U-ring.

We end this paper by giving some examples illustrating the relationships discussed above.

EXAMPLES.

1) Let N be the set of positive integers with the discrete topology. Let βN be its Stone-Čech compactification. The space $\beta N \setminus N$ is a compact F-space, see Gillman and Jerison [4]. Moreover, $\beta N \setminus N$ is totally disconnected. Hence, the space $\beta N \setminus N$ is Boolean. So the ring $C(\beta N \setminus N)$ is an almost PP-ring. However, it is not a PP-ring because the space $\beta N \setminus N$ is not basically disconnected, see Brookshead [9].

2) Let \mathbb{R}^+ be set of nonnegative reals endowed with the usual topology. The space $\beta \mathbb{R}^+ \setminus \mathbb{R}^+$ is a compact, connected F-space, see Gillman and Henriksen [8]. Thus, the ring $C(X)$ has no nontrivial idempotents. So, if it were an almost PP-ring, it would be an integral domain which is not the case because it has plenty of zero divisors. Consequently, $C(\beta \mathbb{R}^+ \setminus \mathbb{R}^+)$ is a PF-rings that is not an almost PP-ring.

3) The ring of integers is an almost PP-ring that is not a PM-ring, and so not an exchange ring.

REFERENCES

1. AL-EZEH, H. Some properties of polynomial rings. Internat. J. Math. and Math. Sci. 10(1987) 311-314.
2. MONK, G. A characterization of exchange rings. Proc. Amer. Math. Soc. 35(1972) 349-353.
3. JOHNSTONE, P. "Stone Spaces", Cambridge Studies in Advanced Mathematics No. 3, Cambridge University Press, Cambridge (1982).
4. GILLMAN, L. and JERISON, M. "Rings of continuous Functions" Graduate Texts in Math. Vol. 43, Springer-Verlag, Berlin (1976).
5. DE MARCO, G. and ORSATTI, A. Commutative rings in which every prime ideal is contained in a maximal ideal. Proc. Amer. Math. Soc. 30(1979) 459-466.
6. CONTESSA, M. On PM-rings. Communications in algebra, 10(1982) 93-108.
7. AL-EZEH, H., NATSHEH, M. and HUSSEIN, D. Some properties of the ring of continuous functions. Arch der Math to appear (1988).
8. GILLMAN, L. and HENRIKSEN, M. Rings of continuous functions in which every finitely generated ideal is principal. Trans. Amer. Math. Soc. 82(1956), 366-391.
9. BROOKSHEAR, J. Projective ideals in the ring of continuous functions, Pacific J. Math. 71(1977) 313-333.

Special Issue on Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from "Qualitative Theory of Differential Equations," allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the *Mathematical Problems in Engineering* aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King's College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk