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ABSTRACT. A two-dimensional autonomous system
x=AX + (xTle, xTBzx)T
of differential equations with quadratic non-linearity is point dissipative, if there exists a positive

number 7y such that the symmetric matrices B! and B2 are of the form

1 1
1

2b12 2722

_Ylb‘

12 b22 2722 0

Y
and bT[O (1)] Ab <0, where b = (béz, -2512] .
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I. INTRODUCTION.

Consider the following two-dimensional autonomous dynamical system

1 2 1 1
x7 +2b xx2+b22x§ (1.1)

X, =a X, +a )(2+blll 125

1<%+,
. 2 2 a2 2
Xy =2y X +ayX, + by X7 + 2b XX, + b22"§

with quadratic non-linearity, where at least one of the symmetric matrices

1 1 2 2
. b, by ) by b2
B = . 1 and B = 9 2

b, by b, b5

a a

12

A= [a a, ] , B and B2, so that the system (1.1) is point dissipative. That is,
21 2

there exists a bounded set G such that the orbit of each solution of (1.1) eventually enters the set G

and remains there.
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II. THEOREM 1.

The system (1.1) is point dissipative if the following conditions are satisfied:

There exists a number ¥ > 0 such that (i) the matrices B! and B2 are of the form

1 1 1,1
0 b, B, 222
1 2
B =1, p | B=Y 1.1
b, by Ebzz 0

Y O 1 1
and (ii) bT(O 1] Ab < 0, where the vector b is given by bT = [bzz’ -2b12] .
In order to prove the above theorem, we need the following lemma:

LEMMA. If the matrices A, B!, and B2 satisfy the conditions (i) and (ii) in Theorem 1, then

it is possible to construct a function (Lyapunov) of the form
V=300 + 30" - pod - 305
(i.e. to choose the real numbers p > 0, a, az) so that the set S = {x | V(x) 2 0}, where V is the
derivative of V with respect to the system (1.1), is bounded.
PROOF OF THE LEMMA. First, we choose p = 7y, where v is the positive number givén in
conditions (i) and (ii) of Theorem 1. vV, for yet unspecified o, and o, is given by
V=gradV - (x,,%,)

TYO T Y 1 2
=-0 (0 1Ax+x 01A'Y°‘1B'°‘23 X,

where ol = (a,,0,). The cubic terms in V cancelled out because of condition (i). [Note that

without the vanishing of the cubic terms there is no possiblity that the set S can be bounded.] Let

(v O 1 2
C=[O l)A-'yalB - o,B".
We would like to show that C is negative definite. This we will accomplish by showing that -C is

positive definite. Again -C = ((Py)) is positive definite if and only if the symmetric matrix

A Py + P, .. .
C= 2 is positive definite. Now

1 1 1
-2yaby, - 13y %(mlblz - Yo,by, - YRy, - a'n)
é:

1(2 b, -youbl, -1a,, - ] b

R SRR IPY RSP R TY B + FUPEE P

A
Necessary and sufficient conditions for C to be positive definite are

'2Y°‘2b:2 -1y, >0, ‘Yalb;Z ~a,>0 @D
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and det (C) > 0. Thatis

2
1 1 1 1
['Zyazblz '7‘111) (Yaxbzz - 322] > %(270‘11’12 Yoy, - YAy, - a21) @2)

We need to show that o, and o, can be chosen so that both the inequalities (2.1) and (2.2) are

e . 1 1 -
satisfied. Setting -2yo,b,, - Ya,, = €,, Y b,, - a,, = €, where €, and ¢, are two positive

numbers, the inequality (2.2) becomes

2
0
1 {T{Y ] 1.2 1.2 }
£€, > —————— b Ab+4(b, ) e +(®,,) € 2.3)
) 16(b}2)2(b;2)2 0 1 127 &1+ 0y,) &

1 1
for the case b12 #0, b22 0.

Yy O
[Note that the inequality (2.3) cannot be satisfied if b" [o 1] Ab >0, for

1 1.2 1.2 .12 : . .92

—_— {4(b12) g, +(by,) 82} > g€, , using the standard inequality a* + b” > 2 |a| |b]].
12,12 122
16(b,,) (b,,)

Yy O
Since by condition (ii) b" (o J Ab <0, letting

Yy O
A )

0
- R
€ = = 2.4)

1 ’ 2
B(by,)” 2b,,)

the inequality (2.3) becomes €€, > 0. Hence both the inequalities (2.1) and (2.2) are satisfied for

these choices of €; and €,. Again this implies that inequalities (2.1) and (2.2) are satisfied for

_ApntE
- ’

1
‘Yb22

BRI

1
27b12

1 2

where €, and €, are given by (2.4). Other choices of &, and o, are certainly possible. Thus C is
negative definite for the above choices of , and a,.

The case where only one of bl12 or b;z is zero can be disposed of similarly. Note that both
bl12 and bl22 cannot be zero, for in that case both the matrices B! and B? become zero matrices
contradicting our assumption. Now to see that the set S is bounded we come back to

Y Y 0 T, . . T, . lY 0
V=- 0 1)Ax+x'Cx. Since the quadratic form x"Cx is negative definite and -] 0 1 Ax

is linear, there exists Ry > 0 such that V < 0 for all x with [lxl| > R;. Hence the set S = {x | V(x) 2 0}

must lie inside the circle S(O,R,) and therefore bounded. Note that the set S contains all the critical

points of the system (1.1).
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PROOF OF THEOREM 1. To show that the system (1.1) is point dissipative under
conditions (i) and (ii), we need to exhibit a bounded set G so that the positive semi-orbit of each

solution of (1.1) eventually enters the set G and remains there. Using the lemma we first construct

the function

V=300-0)" + )’ - 100t - o]
so that the set S = {x | V(x) = 0} is bounded. We can choose 1, > 0, sufficiently large, so that
the level set (ellipse) V = ry contains in its interior the compact set S. We choose the interior of
V =1y as our bounded set G. Let Pg be a point outside of G and ¢(t,Pg) be the solution of (1.1)
with ¢(0,Py) = Py. Let V =r, be the level set of V passing through Py. Clearly r; > ry. Let Hbe
the ring-shaped closed region formed by the two concentric ellipses V =rgand V =r;. Since S

lies inside the ellipse V = Iy V <0onH. Therefore V(0(t,Py)) is a decreasing function of t on H.

Hence the positive semi-orbit C* of ¢(t,P0) must enter the ellipse V = r, and cannot go outside of
V =r; atany time t > 0. Suppose that C+ cannot enter the region G. Then C+ must remain in H
for all time t > 0. We need a contradiction resulting from this hypothesis. C*+ must have limit
points in H. Let L(C+) be the set of all limit points of C+. L(C*) € H. We would like to show
that V is constant on L(C+). Let P, and P, be any two points in L(C+), then there exists sequences
{t,} and {s,} such that

Jmot,P) =P, limoGs,Py =P,
Since V(o(t.PY) is decreasing in H and by continuity V has a lower bound in H, !L’L‘. V((t,P,))
must exist. Let this limit be q. Then

q=1im V(0(t,,Py) = lim V(@(s,.Py)

and so by the continuity of V, V(P;) = V(P,) =q. Thatis V(P) = qon L(C*). Let P ¢ L(C*) and
W(t,P) be the solution of (1.1) with yw(0,P) = P. Then y(t,P) € L(C*). But V(P) = V(y(0,P) =

%(V(\v(t,P))) oo = :t—q =0 which implies a contradiction of V < 0on H. Hence C* must enter

G eventually and cannot go out of G by the decreasing property of V(¢(t,Py)) and therefore

remains in G. This completes the proof.
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