

SUFFICIENT CONDITIONS FOR TWO-DIMENSIONAL POINT DISSIPATIVE NON-LINEAR SYSTEMS

A.K. BOSE and J.A. RENEKE

Department of Mathematical Sciences
Clemson University
Clemson, South Carolina 29631 U.S.A.

(Received March 7, 1988)

ABSTRACT. A two-dimensional autonomous system

$$\dot{x} = Ax + (x^T B^1 x, x^T B^2 x)^T$$

of differential equations with quadratic non-linearity is point dissipative, if there exists a positive number γ such that the symmetric matrices B^1 and B^2 are of the form

$$B^1 = \begin{pmatrix} 0 & b_{12}^1 \\ b_{12}^1 & b_{22}^1 \end{pmatrix}, \quad B^2 = -\gamma \begin{pmatrix} 2b_{12}^1 & \frac{1}{2}b_{22}^1 \\ \frac{1}{2}b_{22}^1 & 0 \end{pmatrix}$$

and $b^T \begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix} Ab < 0$, where $b^T = \begin{pmatrix} b_{22}^1 & -2b_{12}^1 \end{pmatrix}$.

KEY WORDS AND PHRASES. *Point dissipative, quadratic form, quadratic non-linearity, positive semi-orbit, limit set, positive definite, negative definite, autonomous system, symmetric matrices, Level set, critical points.*

1980 Mathematics Subject Classification Number 34.

I. INTRODUCTION.

Consider the following two-dimensional autonomous dynamical system

$$\begin{aligned} \dot{x}_1 &= a_{11}x_1 + a_{12}x_2 + b_{11}^1 x_1^2 + 2b_{12}^1 x_1 x_2 + b_{22}^1 x_2^2 \\ \dot{x}_2 &= a_{21}x_1 + a_{22}x_2 + b_{11}^2 x_1^2 + 2b_{12}^2 x_1 x_2 + b_{22}^2 x_2^2 \end{aligned} \tag{1.1}$$

with quadratic non-linearity, where at least one of the symmetric matrices

$$B^1 = \begin{pmatrix} b_{11}^1 & b_{12}^1 \\ b_{12}^1 & b_{22}^1 \end{pmatrix} \quad \text{and} \quad B^2 = \begin{pmatrix} b_{11}^2 & b_{12}^2 \\ b_{12}^2 & b_{22}^2 \end{pmatrix}$$

is non-zero. We are interested in deriving sufficient conditions on the matrices

$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, B^1 and B^2 , so that the system (1.1) is point dissipative. That is,

there exists a bounded set G such that the orbit of each solution of (1.1) eventually enters the set G and remains there.

II. THEOREM 1.

The system (1.1) is point dissipative if the following conditions are satisfied:

There exists a number $\gamma > 0$ such that (i) the matrices B^1 and B^2 are of the form

$$B^1 = \begin{pmatrix} 0 & b_{12}^1 \\ b_{12}^1 & b_{22}^1 \end{pmatrix}, \quad B^2 = -\gamma \begin{pmatrix} 2b_{12}^1 & \frac{1}{2}b_{22}^1 \\ \frac{1}{2}b_{22}^1 & 0 \end{pmatrix}$$

and (ii) $b^T \begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix} Ab < 0$, where the vector b is given by $b^T = \begin{pmatrix} b_{22}^1 & -2b_{12}^1 \end{pmatrix}$.

In order to prove the above theorem, we need the following lemma:

LEMMA. If the matrices A , B^1 , and B^2 satisfy the conditions (i) and (ii) in Theorem 1, then it is possible to construct a function (Lyapunov) of the form

$$V = \frac{1}{2}\rho(x_1 - \alpha_1)^2 + \frac{1}{2}(x_2 - \alpha_2)^2 - \frac{1}{2}\rho\alpha_1^2 - \frac{1}{2}\alpha_2^2$$

(i.e. to choose the real numbers $\rho > 0$, α_1 , α_2) so that the set $S = \{x \mid \dot{V}(x) \geq 0\}$, where \dot{V} is the derivative of V with respect to the system (1.1), is bounded.

PROOF OF THE LEMMA. First, we choose $\rho = \gamma$, where γ is the positive number given in conditions (i) and (ii) of Theorem 1. \dot{V} , for yet unspecified α_1 and α_2 , is given by

$$\begin{aligned} \dot{V} &= \text{grad}V \cdot (\dot{x}_1, \dot{x}_2) \\ &= -\alpha^T \begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix} Ax + x^T \left\{ \begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix} A - \gamma\alpha_1 B^1 - \alpha_2 B^2 \right\} x, \end{aligned}$$

where $\alpha^T = (\alpha_1, \alpha_2)$. The cubic terms in \dot{V} cancelled out because of condition (i). [Note that without the vanishing of the cubic terms there is no possibility that the set S can be bounded.] Let

$$\dot{C} = \begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix} A - \gamma\alpha_1 B^1 - \alpha_2 B^2.$$

We would like to show that C is negative definite. This we will accomplish by showing that $-C$ is positive definite. Again $-C = ((P_{ij}))$ is positive definite if and only if the symmetric matrix

$\hat{C} = \left(\frac{P_{ij} + P_{ji}}{2} \right)$ is positive definite. Now

$$\hat{C} = \begin{pmatrix} -2\gamma\alpha_2 b_{12}^1 - \gamma a_{11} & \frac{1}{2}(2\gamma\alpha_1 b_{12}^1 - \gamma\alpha_2 b_{22}^1 - \gamma a_{12} - a_{21}) \\ \frac{1}{2}(2\gamma\alpha_1 b_{12}^1 - \gamma\alpha_2 b_{22}^1 - \gamma a_{12} - a_{21}) & \gamma\alpha_1 b_{22}^1 - a_{22} \end{pmatrix}.$$

Necessary and sufficient conditions for \hat{C} to be positive definite are

$$-2\gamma\alpha_2 b_{12}^1 - \gamma a_{11} > 0, \quad \gamma\alpha_1 b_{22}^1 - a_{22} > 0 \quad (2.1)$$

and $\det(\hat{C}) > 0$. That is

$$\left(-2\gamma\alpha_2 b_{12}^1 - \gamma a_{11}\right) \left(\gamma\alpha_1 b_{22}^1 - a_{22}\right) > \frac{1}{4} \left(2\gamma\alpha_1 b_{12}^1 - \gamma\alpha_2 b_{22}^1 - \gamma a_{12} - a_{21}\right)^2 \quad (2.2)$$

We need to show that α_1 and α_2 can be chosen so that both the inequalities (2.1) and (2.2) are satisfied. Setting $-2\gamma\alpha_2 b_{12}^1 - \gamma a_{11} = \varepsilon_2$, $\gamma\alpha_1 b_{22}^1 - a_{22} = \varepsilon_1$, where ε_1 and ε_2 are two positive numbers, the inequality (2.2) becomes

$$\varepsilon_1 \varepsilon_2 > \frac{1}{16(b_{12}^1)^2 (b_{22}^1)^2} \left\{ b^T \begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix} A b + 4(b_{12}^1)^2 \varepsilon_1 + (b_{22}^1)^2 \varepsilon_2 \right\}^2 \quad (2.3)$$

for the case $b_{12}^1 \neq 0$, $b_{22}^1 \neq 0$.

[Note that the inequality (2.3) cannot be satisfied if $b^T \begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix} A b \geq 0$, for $\frac{1}{16(b_{12}^1)^2 (b_{22}^1)^2} \left\{4(b_{12}^1)^2 \varepsilon_1 + (b_{22}^1)^2 \varepsilon_2\right\}^2 \geq \varepsilon_1 \varepsilon_2$, using the standard inequality $a^2 + b^2 \geq 2|ab|$.]

Since by condition (ii) $b^T \begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix} A b < 0$, letting

$$\varepsilon_1 = \frac{-b^T \begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix} A b}{8(b_{12}^1)^2}, \quad \varepsilon_2 = \frac{-b^T \begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix} A b}{2(b_{22}^1)^2} \quad (2.4)$$

the inequality (2.3) becomes $\varepsilon_1 \varepsilon_2 > 0$. Hence both the inequalities (2.1) and (2.2) are satisfied for these choices of ε_1 and ε_2 . Again this implies that inequalities (2.1) and (2.2) are satisfied for

$$\alpha_1 = \frac{a_{22} + \varepsilon_1}{\gamma b_{22}^1}, \quad \alpha_2 = -\frac{\gamma a_{11} + \varepsilon_2}{2\gamma b_{12}^1},$$

where ε_1 and ε_2 are given by (2.4). Other choices of α_1 and α_2 are certainly possible. Thus C is negative definite for the above choices of α_1 and α_2 .

The case where only one of b_{12}^1 or b_{22}^1 is zero can be disposed of similarly. Note that both b_{12}^1 and b_{22}^1 cannot be zero, for in that case both the matrices B^1 and B^2 become zero matrices contradicting our assumption. Now to see that the set S is bounded we come back to

$\dot{V} = -\alpha^T \begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix} A x + x^T C x$. Since the quadratic form $x^T C x$ is negative definite and $-\alpha^T \begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix} A x$ is linear, there exists $R_0 > 0$ such that $\dot{V} < 0$ for all x with $\|x\| > R_0$. Hence the set $S = \{x \mid \dot{V}(x) \geq 0\}$ must lie inside the circle $S(0, R_0)$ and therefore bounded. Note that the set S contains all the critical points of the system (1.1).

PROOF OF THEOREM 1. To show that the system (1.1) is point dissipative under conditions (i) and (ii), we need to exhibit a bounded set G so that the positive semi-orbit of each solution of (1.1) eventually enters the set G and remains there. Using the lemma we first construct the function

$$V = \frac{1}{2}\rho(x_1 - \alpha_1)^2 + \frac{1}{2}(x_2 - \alpha_2)^2 - \frac{1}{2}\rho\alpha_1^2 - \frac{1}{2}\alpha_2^2$$

so that the set $S = \{x \mid \dot{V}(x) \geq 0\}$ is bounded. We can choose $r_0 > 0$, sufficiently large, so that the level set (ellipse) $V = r_0$ contains in its interior the compact set S . We choose the interior of $V = r_0$ as our bounded set G . Let P_0 be a point outside of G and $\phi(t, P_0)$ be the solution of (1.1) with $\phi(0, P_0) = P_0$. Let $V = r_1$ be the level set of V passing through P_0 . Clearly $r_1 > r_0$. Let H be the ring-shaped closed region formed by the two concentric ellipses $V = r_0$ and $V = r_1$. Since S lies inside the ellipse $V = r_0$, $\dot{V} < 0$ on H . Therefore $V(\phi(t, P_0))$ is a decreasing function of t on H . Hence the positive semi-orbit C^+ of $\phi(t, P_0)$ must enter the ellipse $V = r_1$ and cannot go outside of $V = r_1$ at any time $t > 0$. Suppose that C^+ cannot enter the region G . Then C^+ must remain in H for all time $t \geq 0$. We need a contradiction resulting from this hypothesis. C^+ must have limit points in H . Let $L(C^+)$ be the set of all limit points of C^+ . $L(C^+) \subset H$. We would like to show that V is constant on $L(C^+)$. Let P_1 and P_2 be any two points in $L(C^+)$, then there exists sequences $\{t_n\}$ and $\{s_n\}$ such that

$$\lim_{n \rightarrow \infty} \phi(t_n, P_0) = P_1 \quad , \quad \lim_{n \rightarrow \infty} \phi(s_n, P_0) = P_2.$$

Since $V(\phi(t, P_0))$ is decreasing in H and by continuity V has a lower bound in H , $\lim_{t \rightarrow \infty} V(\phi(t, P_0))$ must exist. Let this limit be q . Then

$$q = \lim_{n \rightarrow \infty} V(\phi(t_n, P_0)) = \lim_{n \rightarrow \infty} V(\phi(s_n, P_0))$$

and so by the continuity of V , $V(P_1) = V(P_2) = q$. That is $V(P) = q$ on $L(C^+)$. Let $P \in L(C^+)$ and $\psi(t, P)$ be the solution of (1.1) with $\psi(0, P) = P$. Then $\psi(t, P) \subset L(C^+)$. But $\dot{V}(P) = \dot{V}(\psi(0, P)) = \frac{d}{dt}(V(\psi(t, P)))|_{t=0} = \frac{dq}{dt} = 0$ which implies a contradiction of $\dot{V} < 0$ on H . Hence C^+ must enter G eventually and cannot go out of G by the decreasing property of $V(\phi(t, P_0))$ and therefore remains in G . This completes the proof.

REFERENCES

1. BRAUER, F. and J. NOHEL. Qualitative Theory of Ordinary Differential Equations, New York, Amsterdam: W.A. Benjamin, INC., 1969.
2. HALE, J.K., L. T. MAGALHÃES and W. M. OLIVA. An Introduction to Infinite Dimensional Dynamical System-Geometric Theory, New York, Berlin, Heidelberg, Tokyo: Applied Mathematical Sciences, 47, Springer-Verlag.

Special Issue on Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk