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ABSTRACT. In this paper, the notion of spatial numerical range of elements of Banach
algebras without identity is studied. Specifically, the relationship between spatial
numerical ranges, numerical ranges and spectra i1s investigated. Among other results,
it is shown that the closure of the spatial numerical range of an element of a Banach
algebra without identity but with regular norm is exactly its numerical range as an
element of the unitized algebra. Futhermore, the closure of the spatial numerical
range of a hermitian element coincides with the convex hull of 1its spectrum. In

particular, spatial numerical ranges of the elements of the Banach algebra CO(X) are

described.
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1. INTRODUCTION.

Let A be a Banach algebra with identity 1, ||1|| = ], For each x € A, the subset
of the complex numbers,

V(A,x) = {£(x): £ e A", £(1) =1 = ||£]|}

is called the numerical range of x, where A' 1is the dual of A, (see [1l], [2]).
Evidently, this definition is dependent on the identity of the Banach algebra. Since
a Banach algebra need not have an identity, it 1s worthwhile to study this notion for
elements of Banach algebras without identity. The purpose of this paper is to
investigate this situation.
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Bonsall and Duncan [l] have considered the following situation: Let B(A) denote
the Banach algebra of all bounded linear operators on A. For each a € A, put Ta(x) =
ax(x € A), then T, € B(A) and I (identity operator) is the identity of B(A). They
show [1] that

v(B(a), T)) = y E@x): € ear, [1€]] =1 = £0x)}

ng(A
where S(A) = {x € A: lel' = 1}and call it the spatial numerical range of a € A. We
wish to adopt this notion (Definition 2.1.) to define spatial numerical range for an
element of an arbitrary Banach algebra without identity. For this, we require a
condition on the norm of the Banach algebra. Specifically, we say that the norm of a
normed algebra A is regular (see [3] for details) if for each x € A,
'lxl' = gup {I'axl': 'Ial' <1, a e A}.

Each Banach algebra with an identity can be given an equivalent regular norm. We
will show (Remark 3.8) why the regularity of the norm in this connection is relevant.

Let A be a Banach algebra without identity but with regular norm. Among the
results, we prove that the convex closure of the spatial numerical range VA(x) (Def.
2.1) of x € A coincides with the numerical range of x € At 1.e. To Vy(x) = V(A+,x)
(Theorem 2.3). Moreover, the spatial numerical range VA(h) of a hermitian element
h € A is connected and V;?HY = co spA(h) (convex hull of the spectrum of h)(Theorem
3.5). We apply these results to describe spatial numerical ranges of elements of the
commutative Banach algebra CO(X) of all continuous complex-valued functions vanishing
at infinity on a locally compact, noncompact, Hausdorff space X (Theorem 4.1). We
show that the spatial numerical range of an element in CO(X) lies in between the
convex hull and convex closure of its range in the complex plane (.

All Banach algebras in the sequel are over the complex field € unless otherwise

stated.

2. SPATIAL NUMERICAL RANGES OF ARBITRARY ELEMENTS.
Let A denote a Banach algebra. For each x € A, let
D,(x) = {f ea': |[£]| =1 = €GO

By a corollary of the Hahn-Banach theorem, DA(x) is nonempty. As before, we set
S(A) = {x €A: |'x'| =1} . We have
DEFINITION 2.1
(i) For each a € A, we call
V(@) = {(ax): f €D,(x), x e S(A)}

the spatial numerical range of a.
(i1) The nonnegative real number
YA(a) = sup{'kl: A€ VA(a)}

will be called the spatial numerical radius of a.
We recall [3] that the relative numerical range of a € A with respect to x,
x € S(A) is
VX(A,a) = {f(ax): f € DA(x)}.
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Thus we see that VA(a) = U {Vx(A,a): x € S(A)} which is a bounded subset of the
complex numbers, bounded by ”a”. Furthermore, for any a € A, '!‘a € B(A) (defined in
the introduction) we have:

VA(a) = V(B(A), Ta)‘

This justifies the wusage of the notion of spatial numerical range as defined by
Bonsall and Duncan [1].
The following statements are immediate consequences of the definitions concerned:
LEMMA 2.2 Let a,b €A and a € €. Then

(i) V,(atb) VA(a) + VA(b)
(ii) Vy(aa ) = aV,(a)
(i11) vy (a+b) < y(a) + v, (b)
(1v) v (@) = |af v (a).

THEOREM 2.3 Let A be a Banach algebra without tidentity. If A has regular norm,
‘then for each a € A,
— +
co VA(a) = V(A ,a).

(co X denotes the closure of the convex hull of X.)
PROOF. For each x e A, A € ¢ , define

T(X,x)(a) = Ja + xa (aeA).

Then T € B(A). We set V: at s B(A) by

(A, x)

Y(A,x) = T()‘,x) .
Clearly, Y is an algebra homomorphism. If ¥(A,x) = O, then for all a €A,

Aa + xa=0and so a = [-EA] a if X # 0. Thus —%for A #0, is an identity of A
which is ruled out by hypothesis. If A = 0, then xa = 0. By the regularity of norm,
Hx” = ”:TT<1 Hxa” = 0, showing that (A,x) = (0,0). Thus VY is injective.

We endow A with another equivalent norm “(A,x)“+ = HT()‘ x)“' But then for each
X €A,

/1, = He0a0ll, = 1l = e HHsall = 111

because the norm of A is regular. This proves that ¥ is an isometry from A into B(A)
such that ¥(1,0) = I. Now by result ([l], p.84), the theorem follows.
COROLLARY 2.4 Let A be the same as in Theorem 2.3. Then Yy (Def. 2.1.) defines

an equivalent norm on A and for each x €A,

x| < v (0 < |[x]],

where e= exp(1l).
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PROOF. First we show that vA(x) = v (x) for each x € A. For this, it is
sufficient to show that the following two sets Dy, D, are equal, where D, = {r > o0:
V(A+,x) c D(r)} and D2 = {r > 0: VA(x)C D(r) } in which D(r) is the closed disk of
radius r centered at 0 in €. If r €D then D(r) 2 viat,x) Vy(x) by Theorem 3.2.
and so r € D;. On the other hand, if s € D, then D(s) > VA(x) implies D(s) o> co vy (x)

V(A+,x) because D(s) is closed and convex. Thus s ¢ Dl and so D} = D,. But then
for all x € A
\h(x) = inf Dl = inf D2 = v +(x).
A
Since A* ts a unital Baanach algebra, by the result ([1], p.34) we conclude

x| = [lc00l, > v 00 > e ]|, =™ [[x]], -
A
COROLLARY 2.5 For A as in Theorem 2.3., the following statements are equivalent:

(i) For each a € A, Eb'spA(a) = co Vy(a).
+ +
(ii) For each a € A, co {AZ: A e V(A ,a)} > V(A ,az).

PROOF. Since spA(a) = spA+(a) [5], in view of Theorem 2.3, we have

co spA(a) = co sp +(a) = V(A+,a) = co VA(x)
A

by a Bonsall and Duncan's result ([2], p.49). Now the corollary follows from [2].

3. SPATIAL NUMERICAL RANGES OF HERMITIAN ELEMENTS
In this section, A continues to stand for a Banach algebra without identity.
Here we study the spatial numerical range of hermitian and positive elements.
DEFINITION 3.1 An element a € A is called hermitian if VA(a)<:IR (the set of real
numbers). If VA(a) c IRﬁ a is called a positive element. Let H(A) (resp. K(A))
denote the set of all hermitian (resp. positive) elements.
PROPOSITION 3.2 For any Banch algebra A with regular norm,
H(A) = A n H(AY).
PROOF. By Theorem 2.3., V,(x) cRiff v(A*,x) cIR and the proposition follows.
COROLLARY 3.3 Let A be a B*-algebra with regular norm. Then h € H(A) iff h = n*.
PROOF. Since A has regular norm, by Proposition 3.2., H(A) = A N H(A+) and so by
the result ([1], p.47) h e H(AY) 1ff h = h*.
COROLLARY 3.4 For A as in Proposition 3.2., H(A) is a real Banach space and for
each h € H(A),
VA(h) < co spA(h).
PROOF. It is easy to verify that H(A) is a real Banach space. By Proposition
3.2. [3] and the result ([l], p.53), Vy(h) < co spa4+(h) = co sp,(h) ([5).
THEOREM 3.5 Let A be a Banach algebra with regular norm. Then for each h € H(A),

VA(h) = co spA(h).
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PROOF. As pointed out above after Definitiom 2.1., VA(h) = V(B(A), Th) which is
connected by a result in [6] and hence convex. Since VA(h) c IR, by Theorem 2.3, we
conclude

—— + —————
co VA(h) = VA, h) VA(h)‘

But then from ([l], p.53) it follows that
m)_ = V(A+,h) = co spA+(h) = co spA(h)
by [5].

We give a more explicit description of Proposition 3.2.

THEOREM 3.6. Let A be a Banach algebra without unit but with regular norm. Then
(Ah) € H(A") 1ff h € H(A) and A € R.

PROOF. If (A,h) € H(A'), then V(A',(7,h)) © R and so far for all £ e (&%), ||f]]
=1 = £((1,0), £((A,h) €eR. Since A has regular norm, the mapping a *Ta of A into
B(A) is an isometry (Theorem 2.3) and so T, = {Ta: a €A} is a closed subset of B(A)
and I £ Ty Let

dis(1,1,) = inf {||1 - T ||: a e A}

Since 0 € A implies Ty = 0, we have dis(I,TA) <1l. To show dis(I,TA) = 1, assume it
is < 1. Then there 1is a € A with HI - Ta” < 1 and so T, is {nvertible

with T;l € B(A). If p = T;l a € A, then for all x € A, px = T;l a x = x shows that p

is the identity of A, which is ruled out by hypothesis. Thus dis(I,TA) =1, By a
corollary of the Hahn-Banach Theorem [7] there is f ¢ (A+)' such that £((1,0)) =1,
£((0,h)) = 0. But then (A,h) = (0,h) + A(1,0) implies f£(A,h) = XA ¢ R. Also
(0,h) = (A,h) - A(1,0) shows that h € H(A) by Corollary 3.4. Clearly, h e H(A) and
X €eR imply that (A\h) € H(A+) and the proof is complete.

Finally, we have a characterization of positive elements of A.

THEOREM 3.7 Let A be a Banach algebra without identity but with regular norm.
Then an element k € A is positive iff k € H(A) and spA(k) cmwt.

PROOF. Since each positive element is clearly hermitian, by Theorem 2.3.,
spA(k) c VA(k) c ]R+. Theorem 3.5. implies the "only if" part.

REMARK 3.8 The justification of considering the regular norm in the above results
lies in the following (the authors thank Z. Kovarik for this suggestion). Suppose At
is endowed with the usual norm ||(x,x)|| = 'Al + “x”, then the numerical range

of (A\,x) € A+ ig trivial because for f ¢ (A+)', we have f = (p,g)(n €€, g €A'")
with Hf” = max(l u', ”f”) and ( w,g)(1,0) = u=1 which gives II( n ,g)H =]
1€f ||g|| <1 and so {(1,g)(0,x): ||g|| <1} = {gx): ||g]| <1} =B“x”(0),

the closed disk of radius ”x” But this is known in [1].

4. SPATIAL NUMERICAL RANGES OF ELEMENTS OF CO(X)
In this section, we consider the Banach algebra CO(X) of all continuous complex-

valued functions vanishing at infinity on a locally compact Hausdorff space X. Indeed



638 A.K. GAUR AND T. HUSAIN

CO(X) is commutative and has no identity. We wish to describe spatial numerical
ranges of elements of CO,(X). When X is a compact Hausdorff space, then Stampfli and
Williams [4] have shown that the numerical range of each element f of the Banach
algebra C(X) of all continuous complex-valued functions on X is the closed convex hull
of its range, f(X).

By way of comparision, we also show by an example that the spatial numerical
range of an element of a Banach algebra without identity need not be closed whereas it
is well known that the numerical range 1s always closed and convex ([1]).

THEOREM 4.1 Let X be a locally compact Hausdorff space and CO(X) the commutative
Banach algebra of all continuous complex-valued functions on X that vanish at

infinity. Then for each g € CO(X),

co R(g) c V (g) © co R(g),

CO(X)
where R(g) is the range of g.

PROOF. Let a € co R(g). Then a = 21'_11 Xig(xi) with )\i >0, 21:1 ).1 = 1 for some
Xy € X. Define

em) = L1 A hx)

for h e C,(X). Clearly ¢ is a bounded linear functional on C,(X) and (h) >0
whenever h » 0. Thus ¢ ¢ C'O(X) represents a measure with total variation = H¢H=l.

By complete regularity of X, there is f: X + [0,1] in CO(X) with Hf” = 1 and f(xi) -
1 (1 <i <n). But then

n
oe) = L N fx) =1

n n
and e(fg) = [ A flx) gx) =] A gx) = a
i=1 i=1

C
This proves that co R(g) Vco(x)(g).

On the other hand, suppose a € VC (x)(g). Then there is f € Co(x), Hf” =] with
o e V(C_(X), g) and so there is ¢ ¢ C' (X) with ||¢|| = 1 = ¢(£) such that

a= ¢(fg).
Let E = {x €X: If(x)l = 1}, Then E 1is a compact subset of X because
f e CO(X). Since ¢(f) = 1 and II‘P“ = 1, ¢ is a measure supported on E. Define the

function,

, X € E,

w(x) =
continuously extended to X with norm less than or equal to 1.

*
Let M, denote the pointwise multiplication by w in CO(X) and let M be the adjoint of
M acting on measures VY € C‘; (X). 1If w denotes the conjugate of w, we define a
measure,
*
v
w
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— * * %
because ww =1 on E and Mww = Mw M ¢=9¢.
w

But then
* *
a= ¢(fg) = L WEg) = Mw ¢(Mfg)

WM Mg) = WM cg)
w(M|f|¢) = W|f]e) = We)-

Since ¢ > 0, l,w'l =1, ¢ is a probability measure and so

a=¥g) =1lm [ WE) glx;) x €E
i
max w(Ei) + 0
€ co R(g).

This completes the proof.
EXAMPLE 4.2 We show by an example that the spatial numerical range of an element
of a Banach algebra without identity need not be closed.

Let A= { f €C[0,1]: £(O) = 0} . Let f(x) = x, x € [0,1]. We show that VA(f) =
(0,1], which is nonclosed. To see that 0 £ Vg(A,f) for g € A with ||g|| = 1, suppose
the contrary. Then there 1s ¢e A' with ¢(g) = 1 = llg,l, ||¢|| =] such that
#(£fg)=0. Let

B, = {t ¢ [0,1]: |gCe)| =11

then inf Eg > 0. Clearly ¢ is a probability measure with its support in Eg and thus

0 = ¢(fg) = [ fgde = [ tg(t) do (t).
E E
g g
But g(t)d ¢(t) being a measure with g(t)d¢ (t) > 0, we have
0 = ¢(fg) > inf Eg [ g(t) da¢ (&) >0
E
g

(because t > inf Eg)' This is absurd and so 0 £ Vg(A,f) for any g € A with ||g|| = 1.

Let t € (0,1] and construct a continuous function

0, 1f x =0

gt(X) 11, if x = t
e€[-1,1] elsewhere

Let ¢ = Gt (Dirace measure) so that ¢(gt) = 1, |l¢|' = 1 and ¢(fg) = t. Thus
(0,11 € V,(£). On the other hand, 1f 0 # X € V,(f), then there g c4, ||g|| = 1
with A= V (A,£). Thus for a ¢ e A", ||9]| =1 = (g), ve have

A= efg) = [g ta(t) 4 (t) € (0,1]

because of the properties of the integral and convexity of (0,1]. This proves that
V4(t) = (0,1], which is not closed.
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