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ABSTRACT. Upper and lower solutions are used in establishing global existence
results for certain two-point boundary value problems for y''' = f(x, y, y', y'")

and y(n) (n-l)).

= £(x, ¥, ¥'y oo, ¥
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1. INTRODUCTION.
In this paper, we will be concerned primarily with the global existence of
solutions of boundary value problems for the third order ordinary differential

equation
y''rto=f(x, ¥, ¥, YY), (1.1)
satisfying boundary conditions of the fora
y(a) =y;, y'(a) = yy, y'(b) =y3, a < b. (1.2)

The result we obtain for (1.1), (1.2) is an extension, in some sense, of those for
boundary value problems for second order equations which appeared in a recent paper
by Umamaheswaram and Suhasini [1]. The results in [l] made use of, or were compared
to, results dealing with upper and lower solutions for second order equations
obtained by Jackson and Schrader (2], Lees [3], and Schrader (4-6]. In |1, Theorem
1], the following is proved.

THEOREM l.l. Assume that with respect to the second order equation,
y'' = g(x, y, y'), the following are satisfied:
(A.1) g: [a, B] x R? + R 1is continuous.
(B.1) Solutions of initial value problems exist on [a, B] or become unbounded.
(C.l) There exists a sequence {Mj} of real numbers + + «, such that
£(x, Mj’ 0) >0, for every j > 1 and all a £ x < B.
(D.1) There exists a sequence {Nj} of real numbers + - «, such that
£(x, Nj’ 0) <0, for every j > 1 and all a < x £ B.
Then the boundary value problem

' o= glx, ¥, ¥'),
y(x1) =y, y(x3) = y,,

where o { x; < xp B8, and y;, y € R, has a solution.

In Section 2, we extend Theorem 1.1 to boundary value problems (l.1), (l.2).



616 C.J. CHYAN AND J. HENDERSON

For this extension, we geuneralize (C.l) and (D.l) so that the conditions set forth by
Klaasen [7] for (l1.1), (l.2) are satisfied for any v, € R, i=1, 2, 3,
In Section 3, the results we obtained for (l.1), (l1.2) are generalized somewhat
to boundary value problems for the ath order equation
7™ = £(x, 5, ¥ty e, ¥, (1.3)

(n-zz

satisfying

y ) = ypl<i<nl, y
We conclude Section 3 with an example.
2. GLOBAL EXISTENCE FOR (1.1), (1.2).

In this section, a theorem is proved coancerning the global existence of

b) = Yo @ < b. (1.4)

solutions of (l.1l), (l.2). We assume in this section that with respect to (l.l), the
following are satisfied.
(A.2) f(x, uy, uy, uz): [a, b| x R3 + R is continuous.

(B.2) Solutions of initial value problems for (l.l) extend to |a, b] or become

unbounded.

(C.2) There exist sequences {LS} and {Mj} of real numbers with both I..j >+
and Mj + + =, such that f(x, Mj X+ Ly Mj’ 0) >0, for a1l 1, j > 1 and all

a {x<b

(D.2) There exist sequences {Kj} and {Nj} of real numbers, with both Kj + -
and Nj + - o, guch that f£(x, Nj x + K, Nj’ 0) <0, for all i, j > 1 and all
a<x<b.

THEOREM 2.1. Assume that (A.2) - (D.2) are satisfied and that f(x, ups Uy, u3)
is nonincreasing in uy for each fixed x, uy, Uz, Then the boundary value problem
(1.1), (1.2) has a solution for any choice of Yy» Yg» Y3 € R .

PROOF. Let 1y, ¥, ¥3 € R be given. By hypotheses (C.2) and (D.2), there

exist I, J e N such that

Nja + Kp Ly Sfpa L,

and NJ.S min {yz, y3} £ max {yz, y3} < MJ.

Defining Y(x) = Nx + Ky and Y¥(x) = Mx + LL’ it follows Y(i)(x) < W(i)(x) on
on [a, bl, for 1 =0, 1. Furthermore, by (C.2) and (D.2), Y(x) and Y¥(x) are
lower and upper solutions, respectively, of (l.1) on [a, bl.

It follows from results due to Klaasen [7] that there exists a solution y(x)
of (L.1), (1.2), for this choice of Yys Yg» V3o and furthermore y(x) < y(x) < ¥(x)
and N, Ly (x) <My on la, 6J. [he proor Is comprlecte.

3., GLOBAL EXISLENCE FOR (1.3), (1.4).

In this section, we will be concerned with the existence of solutiouns of (1.3),
(l.4). For this consideration, results due to Kelley [8] will pe used. We assume
hnere that with respect to (1.3), the following are satisfied.

(A.3) f(x, Ups Uyy eeey un): [a, b] x R® > R is continuous.

(B.3) Solutions of initial value problems for (1.3) extend to [a, b] or become

unbounded.
(C.3) There exist sequences {M, .}, {M, .}, ..., {M -1 .} of real numbers, such
1,] 2,3 n=l,jJ
n-1 k-1
that M » +o, 1 <k < nl, and such that if p (x) = ) o X
=" = h]

kyJ 13z oee g k=1 Kody
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[] (Il 2)
then f(x, pjl e (x), pjl (X)y ooey pjl "'J (x), 0) > 0, for all

n-1 cee Jpmy -1
jl’ ooy jn_IZI and all a {x< b.

} of real numbers, such

(D.3) There exist sequences 1 j}, {N2 j}, ooy {Nn-l,j
n-1 k-1
that Nk,j + ==, 1 <k o1, and such that if quJz .. j (x) = ‘Zl Vk,jx X
thea £(x, q, IR G g2 5 (0, 0) <0, for all
Lo Ja-1 1 Ja-1 Jpoee Jo-1

j1 s eeey jn-l and all a < x < b.

THEOREM 3.1. Assume in addition to coanditioms (A.3) - (D.3) that, if y(x) is
a solution of (1.3) with maximal interval of existence IC la, b] such that
y(n-z)(x) is bounded on I, then y(n 1)(x) is bounded on L. Furthermore, assume
that for eacn 1 < 1 < n-2, f(x, Upy Uyy ey un) is noniucreasing in ugs for each
fixed x, Ups ey Uy g Uiy eeey Upe Then the boundary value problem (1.3), (1.4)
nas a solution for any choice of ¥y € R,1<1<n

PROOF. Let gy € R, 1<1<n, be given. It follows from (C.3) and (0.3)

that there exist jl’ j2, ey jﬂ_1 € N such that

(i-1) (1-1)

: . (a) <y, <p (a),l<1<n-z

Jp eee Jo) -1 - j1 J -1
(n-2)

= (n-2)!
jl L jn-éa) (n=2)! N L3, Smin{y 15 ¥}
- = (n 2)
< max {yn_ly Yn} < (n=2)! 11n_1’jn—1 jl . j::i.

Defining Y(x) = (x) and Y¥(x) = Py (x), it follows from

q
jl cee jn—l IEREN jn-l

(n—2)(x) - Y(n—2)(x) = \F(n-Z)( ) - (n.z)(a) > 0, for all a { x { b, and from

(1 1)(a) > Y(i 1)(8) 1 <1< 02, that Y(i l)(x) < ‘l’(i 1)(x) on |a, b], for
l <ixg -1, Furthermote, from (C.3) and (D.3), y(x) and Y¥(x) are lower and upper

solutions, respectively, of (1.3) on [a, b]. It follows from the other hypotheses
of the Theorem and from a result due to Kelley [3] that there exists a solution y(x)
of (1.3), (l1.4), for this choice of v, € R, 1< 1< n. Moreover, 7(1-1)():) <

y(i-l)(x) < ‘Y(i-l)(x) on [a, b], for 1 < 1 < n-l. This completes the proof.
EXAMPLE. Let g: R +» R be defined by
Sin (mu/e™) , u<o0,
g(u) = < -2u sy 0 uxe,
-2¢" + 2¢" sin (wu/e™), u > e,
and let f(x, Uy eees un): [0, 7] x R® » R be defined by
f(x, Ups ooy U _1s un) = g(un_l) + 2un.
The conditions of Theorem 3.1 are satisfied with respect to the differential equation

v 2 £, v ¥, eees vV = g2y 4 gy lamh), (3.1)

In particular, g.é » 1 <1< n, are piecewise continuous and bounded on |0, m] x Rn,
i

hence initial value problems of (3.1) exist on [0, m]. Also, the sequences

(e’

= satisfy coandition (C.3),

M .} = {j}, for 1 < k < n-2, and {Mu_ } =

k)j llj

m
whereas, the sequences {N ,j} {-j}, for 1 <k { n-2, and {N a1 j {—Tn_-ZT"}

satisfy condition (D.3). Hence, by Theorem 3.1, boundary value problems for (3.1)
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satisfying

are solvable.

y(x) = ﬁ

In fact,

7 c
(-4)

(-4)

\

where 0 <C<K 1
y Doy = 82y Lo,y <1<l

1.

2,

3.

7.

8.

— [-e® cosx +
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y(i'l)(o) =y, 1<1< o1, y(n-Z)(n) =y,

k 41-1 41-2
i 2i-1, x
[e¥sinx + § (-1) [ )
i=1 : : 2
21-2 x*3

2 T1=377 ]]! n=4c+ 2, k=0,1, 2, ...,

k
[ex(sinx - cosx) + ] (-1)
i=1

41 x41-1

i [221 ( X + _ .)

@nT
(412
422171 T )t as=sk+3, k=0, 1,2, ..,

k ( 1)1 [221 ( 41+1 41 )
i=1 ( T : T
x41-1

2i-
2" e |

+ (x+¥1) ], n = 4(k+l), k=0, 1, 2, ...,
A1-2 K413

k
x i 2i-
— [e™(sinx + cosx) + | (-1)" [2 (‘41_4)1 + (41-J)r)

i=1
41-4
+2212 X- ]]’ n = 4k+l, k=1, 2, ...,

, are infinitely many solutions of (3.1) satisfying
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