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ABSTRACT. For an interval I in [0,2n] with halves L and R, a weighted

special atom looks like b(t) = 1 [xL(t) - xR(t)], where p is a non-

p(|I|)
negative function satisfying some properties.

We consider the weighted special atom space B(p) formed by o' linear
combinations of these weighted atoms.

We showed that if f € B(p) then its Fourier series converges almost
everywhere, using the Carleson-Hunt idea on their famous result about the

almost everywhere convergence on Lp-spaces.
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1. INTRODUCTION.

In [2] the following space was introduced.
B(p) = {£: [0,2x] » R, £(t) = Jcb(t), I |c| <=} Each b isa
n=0 "% po " "

weighted special atom, that is, a real valued function b, defined on [0,2n],

2n

which is either b(t) = L or b(t) = 1 [xR(t) - xL(t)], where I is an
p(IIl)
interval in [0,2n], L 1is the left half o

I and R 1is the right half.
lIl denotes the length of I, Xg the characteristic function of E and »p

is a non-negative, real valued function which is increasing, and p(0) = 0. B(p)
is endowed with the norm "f“B(p) = Inf J lcnl, where the infimum is taken over
n=0

all possible representations of £. B(p) is a Banach space. For more details
about this space B(p) the reader is referred to [2].

The Carleson-Hunt theorem on the almost everywhere convergence of a function
in Lp for 1 < p < =, asserts that if f ¢ Lp, then the Fourier series of f,
denoted by S(f,x), converges to f almost everywhere. (See [1] and [5].)

In this note, using basically the idea of Carleson-Hunt, we will prove that

with some additional condition on p if f ¢ B(p) then the operator
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Tf(x) = sup ISn(f,x)l where Sn(f,x) is the nth partial sum of the Fourier series
n

of £, is bounded into some Banach space L(¢).

We would like to point out that other direct proofs of the almost everywhere
convergence for functions in B(p) are also available. For example, for some p
any function in B(p) satisfies Dini's condition. However we prefer this one,
because it is a consequence of the boundedness of the maximal operator and this
boundedness could be useful in other contexts, for example in the interpolation of
operators.

One of the most important features of the space B(p) is that under some
additional conditions on p, it can be identified with the space of analytic
functions F on the disc D = {z ¢ C ; Izl < 1} satisfying

1 2n
) J IF'(rele)l p“ ’) dedr < =
)

where the dash means the derivative of F with respect to z. For this

characterization see [2].

2. PRELIMINARIES.
DEFINITION 2.1. A function p: [0,») + [0,») is said to be in the class b, if it

satisfies

i) p(0) = 0, ii) p 1is non-decreasing, iii) p(z) is decreasing,
iv) Ih p( S) 4s < Cp(h) C an absolute constant
v) Iiﬂ pit) dt < C (_h) with C independent of h and op.
1/a
c : a a 2ne
Example of functions in the class b, are p(t) =t , p(t) =t~ log n

for 0 < a < 1.
DEFINITION 2.2. We define the space L(¢) by L(¢) = {£:[0,2n] » R,

"f"¢ = Ig"f*(t)¢(t)dt { =}, where f* is the decreasing rearrangement of f,

defined by f*(t) = Inf{y: meas {x; If(x)l > y} £ t}, where meas means Lebesgue
measure and ¢ is a non-negative, decreasing function.

In [6], G. G. Lorentz showed that " "¢ is a norm if and only if ¢ is a

non-negative, decreasing function. Also he proved that L(¢) is a Banach space.

Recall that if S (f x) is the nth partial sum of the Fourier series of f

and We (x) = lim sup |S (f£,x) - S (f x)l, then S (f x) converges to f almost
n+e k>n

e2n

everywhere if and only if wf(x) = 0 almost everywhere.

3. MAIN RESULT

The main result can be stated as follows.
THEOREM. Let p be a function in the class b,. If £f € B(p) then the maximal
operator defined by Tf(x) = sup IS (f,x)I maps B(p) into L(¢) for ¢(t) = pit)

boundedly, that is, "Tf" M"f"B(p)' where M is a positive, absolute constant

and Sn(f,x) is the nth partial sum of the Fourier series of f.
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PROOF. First of all we notice that the operator Taf - fa where fa(x) = f(x-a)
maps B(p) into B(p) continuously. Consequently we just need to prove the result for

fh(t) — [x ) -x ()], h >0 which will follow from the

estimate for g(t) = x (t). 1In fact let Sn(g,x) - % ff“g(t)Dn(x-t)dt where

[0,h]
sin(n+%]t 1 *
D (t) = ———— is the Dirichlet kernel. Therefore we have S (f,x) = — [ D (t)dt.
n .t n n n
2 sin 3 x-h

We now use the elementary inequality IDn(t)l < ¢ , 0X Itl £ m, satisfied by the
t
Dirichlet kernels D_, where C is an absolute constant. Thus

n
X X
s, o] < 1 |p er]ar < 1 Ldat <P cac® for x> 2n
x-h x-h Itl x-h x

and lS (g,x)l < 2C h for x < -2h.
n = "T-x
Recall that I: Dn(t)dt is uniformly bounded in n and x; that is,

| I; Dn(t)dtl £ A where A is an absolute constant. (See [7], volume 1,
page 57.)

Consequently we have

1) Tg(x) < A for all x

2) Tg(x) £ 2C TET for le > 2h.
x

We now evaluate "Tg"¢, for ¢(t) = gﬁ%l. In fact, using 1) and 2) we get

"Tsn¢ - Ig"(Tg)*(x)giﬁl dx = Igh(Tg)*(x)Eiil dx + fg:(Tg)*(x)géil dx

2h p(x) 2n p(x)
<A Io +— dx + 2Ch I2h S dx.
Now using the conditions on p we get
lIzell, < ac pczn) + 2cn 2{ZR) - wp(2n)

The constant C may not be the same at every occurence.

Consequently "Tfh"¢ < M and so if f£(t) -ngocnbn(t) where b (t) =

1 t e .
[x, (&) = x, (£)] and § jc_| < =, we get llzell, <M 3 e which implies
@ 5 ) e Fel enilel

Tf < M||f . The proof is complete.
el < wllell ), mme o p
COROLLARY. Let p be in the class b,. If £ € B(p), then {Sn(f,x)} converges

to f(x) almost everywhere.

PROOF. Let f e B(p) then f£(x) = J c b (x) where J Icnl < « and the
n=0 n=0

bn are weighted special atoms. Now observe that

wf(x) = lim sup Sk(f,x) - Sw(f.x)l satisfies wf(x) < 2T£(x). Therefore

n-+= k>n
>n
21 2n
*
] wk(x) Pit) dt <2 | (TE(x)) p(:) dt and so w. © L(¢). On the
0 0 K
other hand we see that w_ = w

where fk(x) - % cnbn(x) and

£ f—fk n=0
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“fk - f"B(p) + 0 as k » =, Then wf(x) - wf_fk(x) < 2T(f - fk)(x) and

consequently the theorem, that is, the boundedness of T, implies that

"wfll¢ < 2f|lr¢e - fk)"¢ < aMfe - fk"B(p)' So letting k + = we get
"w " = 0. Thus w_(x) = 0 almost everywhere, which implies by the comment right
£ £

after definition 2.2 that Sn(f,x) + f(x) almost everywhere. The proof is complete.

We emphasize that for p(t) = tl/p

P

, 1 < p <= the space B(p) is the

space and L(¢) is the space L(p,l) 1in [3], and so the results in this
paper on B(p) 1is a generalization of that result.
We also point out that for p(t) = t, one can indeed show that there is a
f ¢ B(p) so that the Fourier series of f, diverges almost everywhere. (See [4]).
This answers a question asked of the author by Professor Guido Weiss concerning
almost everywhere convergence of functions in B(p) for p(t) = t.
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