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ABSTRACT. Existence-uniqueness theorems are proved for continuous
solutions of some classes of non-linear hyperbolic equations in
bounded and unbounded regions. In case of unbounded region, certain
conditions ensure that the solution cannot grow to infinity faster

than exponentially.
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1. INTRODUCTION.

In this paper we study the existence of a unique solution to
some non-linear partial differential equations of hyperbolic type.
These equations appear in a mathematical model for the dynamics of
gas absorption [1], and the main interest is to find solutions
of exponential growth to a non-linear hyperbolic equation with
characteristic data. It is possible to investigate such problems by
the method of successive approximations, after reducing the
differential equation to a Volterra integral equation in two
variables. However, here we use the method of equivalent (weighted)
norms, which considerably reduces the volume of computations. It
should be noticed that in [1], an asymptotic investigation of
corresponding linear equations has been conducted as t-o. Periodic
and almost-periodic solutions of a similar class of non-linear

hyperbolic equations have been studied in [2]. The method of
successive approximations has been applied in [3] and [4] to find
bounded solutions of non-linear hyperbolic equations with time
delay, which arise in control theory and in certain biomedical
models.

We consider the equation

Uyt (x,t) = F(x,t,u(x,t),uy(x,t)), (1)
and pose for (1) the following initial and boundary conditions:
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u(o,t) = ug(t): 0<t<T
u(x,0) = @(x); 0<x<¢ (2)
where ug(t) and ¢(x) are given functions in the domain
A : [0,4] X [0,T], and we are interested in existence-uniqueness

to problem (1)-(2).
Two norms ”x", "x"*on a Banach space are called equivalent if
there exist two positive numbers p and g such that
pl=l < =l < a =

For example, if- the function x(t) belongs to the space of
continuous functions on [0,T], it is easy to see that the norms

l=l = max [x(t)],
0<t<LT
and
I=], = max e x|, 1 >0 (3)
0<t<LT

are equivalent. In order to prove the existence of a unique
continuous solution to our problem, we use a norm similar to (3)
and choose L; so that a certain integral operator becomes a
contraction.

2. MAIN RESULTS

We prove our first result for equation (1) with the initial
and boundary conditions (2) as follows.
THEOREM 1. Assume the hypotheses:
(i) The function ug(t) is continuously differentiable on [0,T]
and ¢(x) is continuously differentiable on [0,¢].

. . . . . 2
(ii) The function F(x,t,u,v) 1is continuous in A X 2 and

satisfies the Lipschitz condition
|F(x,t,u,v) - F(x,t,u,v)| < L [Iu - GI + lv - Gl} (L)

for u, v, G, VER uniformly with respect to x, t.

Then problem (1)-(2) has a unique continuous solution in A.
Proof. We change equation (1) to

xrt
u(x,t) = uO(t)+0(X)-¢(0)+J J F(Elnlu(Eln)luE(Eln)) dndg (4)
0’0
and introduce the operator

X[t
Aw(x,t) = uo(t)+¢(X)-¢(0)+[ J F(e,n,w(E,n),wg(E,n)) dAndk (4")
0Jo

1
on the space C7(4) of all functions w(x,t) continuously
differentiable in A.

We define a weighted norm in cl(A) by the formula:

Ivl, = mex o™ | e

where the constant L > 0 will be chosen later. Since ug(t), ¢(x),
are continuously differentiable and F(x,t,u,v) is a continuous

+

w(x,t)

wx(x,t)
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function of its variables, operator (4') maps Cl(A) into Cl(A).

Now, we want to show that A is a contraction on Cl(A). Consider
the difference

AW(x,t) - Aw(x,t) =
xft _ _
J [F(E,U,W(E,ﬂ),WE(E,“))'F(E»“»W(E:ﬂ),WE(E,"I))] dndg
olo

for w, w € Cl(A) and apply the Lipschitz condition, then

_ x[t
Aw(x,t)-Aw(x,t)' <L J J [
oJo

w(E,m)-w(g,n) [+ WE(E,n)-QE(E,n)I] dndk

Consider the derivative of Aw(x,t) and AG(x,t) with respect to x,
then

[(Aw(x,t))X - (AG(x,t))xl

t
< J |F(X,T],W(X,'l1) lwx(xyn))’F(xr"lG(x:“) l“-’x(xln)) I an
0

ot

+ wx(xln)'wx(xl“)l dan

< L Iw(x,n)-v-v(x,n)
From here,

st [ Aw(x,t)-Aw(x,t)| + (Aw(x,t))x-(AG(x,t))X”

Xrt c
-Ly(t-n) -L - -
< L e L1 (t=m) ~Iqm Iw(z,n)-w(s,n) + WE(E”])_WE(E'n)l dndg
oo g J
© ' ”
-L; (t-n) -L - -
+n | M RNy (o, my - (x,m) |+ wx(x,n)-wx(x,n)’ an
Jo L J
_ xrt -Ll(t-n) _ t -Ll(t-n)
<L " w - W "* I J e dn dg + L " wo-w I e dn
0’0 0
A R S S N I
Ly * L, * L, *
If we pick Ly > L(¢+1) and define q = Eiizi-ll, then

1

o -2, < alw-3l,

with 0 < g < 1. This shows that the operator A is a contraction
and proves the theorem.

The following proposition concerns the solution behaviour of an
equation linear with respect to ux(x,t) in an unbounded region as
t>o. Although this result is generalized in Theorem 3, its

proof 1is given for instructive purposes.
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THEOREM 2. For equation

Uyt (%, t) + a(x,t)uy(x,t) = £(x,t,u(x,t)), (6)
and the initial and boundary conditions

u(o,t) = ug(t): 0 £t <o

u(x,0) = e(x); 0 <x < ¢ (7)
assume:

(1) a(x,t) is continuous in 2 : [0,¢] X [0,»w) and satisfies
the condition a(x,t) 2 m, where m is a constant, the
function ¢(x) is continuously differentiable on [0,¢].

(ii) The function f(x,t,u) is continuous in & X ® and
satisfies the Lipschitz condition

|£(x,t,u) - £(x,t,v)| < L |u-v]|
for u, v € ®, uniformly with respect to x, t; the function

f(x,t,0) satisfies the inequality
lfex,t,00] < k) elt

where (x,t) € @, Kl is a constant, and

Ll > L4 - m. (8)
(iii) The function ug(t) is continuously differentiable on [0, )
and satisfies

Lt
| uo(ty | < K, e L

for t € [0,®), K2 is constant, and L1 satisfies (8).

Then problem (6)-(7) has a unique continuous solution u(x,t) in @
and
-Lq,t
sup e 1 |u(x,t)| < o.
Q
Proof. First, transform equation (6) to

X -Iga(z,a) da
u(x,t) = ug(t) + | e(g) e dg

0

X[t -fﬁa(5,¢)d@
+ J J e f(g,n,u(k,n)) dndg (9)

oJo
and introduce the operator

X -Iga(i,¢)da
Aw(x,t) = ug(t) + J v(E) e dg

0

e f(g,n,w(g,n)) dndg (10)

t
X[t -Ina(z,m)da
+
olo

on the space B(£) of all functions w(x,t) continuous in @, with the

norm
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-I,t
" w "** = sup e L |w(x,t)|, L, > 0. (11)
Q
Now we prove that the operator (10) maps B(2) into B(£). Indeed,
X —Iga(z,w)d¢
Aw(x,t) = ug(t) + p(E) e dg
(o]

X[t —J.ta(E,o,)da,
n
+ j [ e (£(e,n,w(e,m)) - £(&,n,0)) dna:

oJo

, ijt -Iﬁa(g,¢)d¢

e f(¢,n,0) dndg
oJo
and from the hypotheses of the theorem, we can write
-Lyt -, t
[¢(x)| < K, e 17|£(x,t,0)] < K o, el [ug(ty| < K, .
Hence, by virtue of Lipschitz condition (L), we obtain
It - (Lq+
e 1T|aw(x,t)| < K+ Kte (Lprm)t
x[t K. ¢
- (m+ t- -
s | | T ™I EM I g 0y | anae + —— .
olo m + L1

Taking into account (11), this implies

x[t
E—thIAw(X,t)l < [K2+ ke + EL(:—] +L " w "**J J e_(m+L1) (t-n)dﬂdi.
olo

Therefore,
Kl L
| 2w, s &, + (x+ sl L hwl,, -

From here we see that if " w "** is bounded, then " Aw "** is

bounded, which proves that A maps the space B(£) into itself.
Now, we evaluate Au - Av for u, v € B(2),

L ¢ . -(m+L4)T
R T i L R
Since the above limit is 1, one can write
L L
" Au - Av "** < m " u-v "** ’

which shows that A is a contraction on & and proves that problem

(6)~-(7) has a unique continuous solution in @ which is bounded in

the sense of norm (11).

THEOREM 3. Assume for problem (1)-(7) the following hypotheses:
(1) The function ug(t) is continuously differentiable and

s e Lt .
satisfies |u0(t)| < K2 el” for t € [0,»), where K2 is a

constant, and ¢(x) is continuously differentiable on [0,{].
. . 2 . .
The function F(x,t,u,v) 1is continuous in & X ® and satisfies

Lipschitz condition (L), uniformly in x, t.

(ii)
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(iii) The function F(x,t,0,0) satisfies
t
|F(x,t,0,0)] < K, et
K3 is a constant and L, > L(¢+1), where L is Lipschitz

constant.
Then problem (1)-(7) has a unique continuous solution u(x,t) in @

and
sup e_thlu(x,t)I <o
Q
Proof. We reduce (1) to (4) and introduce the operator (4') on the

space Cl(a) of all functions w(x,t) continuously differentiable in

2, with the norm

I wi, = sup e™° +

wx(x,t)l (12)
Q

'W(X,t)

. . 1
First, we prove that the operator maps Cl(n) into C (£). Indeed,

xrt
Aw(x,t) = uo(t>+w(x)-w(0)+J J [F(E,H,W(E,ﬂ).wE(E,n))-F(E,n,O,O)]dndE
0‘o0

xrt
+I [ F(¢,n,0,0) dndg

odo

and

t
(aw(x,£)) = o' (x) + J (F(x,n,w(x,n) Wy (x,m)) - F(x,1,0,0)] dn

o]

t
+ JO F(x,n,0,0) dn .
Hence,
Aw(x,t) |+ [Aw(x,t)]xl < | uge) |+ ex)=e(0)| + |o*(x)|

xrt it
+ L [ J [|w(E,n)|+|wE(E.n)l] ande + I0I0|F<Ev"r°:0>l andt
0’0

t t
+ L J [|w(x,t)|+|wx(x,t)|] dan  + J |F(x,n,0,0)| an
0 0

Multiplying the previous expression by e-th, we have

L1t + e_thlw(x)—o(0)|

e‘th[IAw(x,t)|+[Aw(x,t)|x] <e u ()

xrt
-Lit - -n) -
+e 1er(x)| + L I J o La(t-m) L1“[lw(€,n)|+|wi(g,n)| dnds
olo _

xpt
Ly (t-m) -L
+ J [ e P M Tl 5 (e 00,0y | anas
oo
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© Ly (t-m) -Lgm
+ J e 1 e 1 [lw(x,n)+wx(x,n)l] dn
0
L (t-m) -Lyn
+ I e e |F(x,n,0,0)| an .
0

If we let e‘th[Iw(x)—w(o)|+|@'(x)|J < K and take into account

l ’

t
- t-
J e La( n)dn < L
0

L '
then
it , A(x,t) | + [Aw(x,t)]x' <K, + K+ %f fwl, + 5%%
L K
+ I “w"* + ii .
Therefore,

’

K, (L+1 L(¢+1
zé ), L ) "w"*

lawe, ey, < K, + K+ »

which proves that the operator (4) maps Cl(a) into Cl(ﬂ), For
the proof of contraction, we simply repeat the corresponding

computations of Theorem 1.
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