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ABSTRACT. Consider a sequence of independent random elements {V,, n 2 1} in a real separable
normed linear space X (assumed to be a Banach space in most of the results), and sequences of con-
stants {a;,, n 2 1} and {b,, n 2 1) with 0 <b, T co. Sets of conditions are provided for

{a,(V, —EV,), n 2 1} to obey a general strong law of large numbers of the form

n
> 3(V; — EVj)/b, — 0 almost certainly. The hypotheses involve the distributions of the
=1

{V,, n 2 1}, the growth behaviors of {a,, n 2 1} and (b,, n 2 1}, and for some of the results
impose a geometric condition on X. Moreover, Feller’s classical result generalizing the
Marcinkiewicz-Zygmund strong law of large numbers is shown to hold for random elements in a
real separable Rademacher type p (1 < p < 2) Banach space.
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1. INTRODUCTION.

Let (Q, F, P) be a probability space and let X be a real separable normed linear space with

norm | |-1{. It is supposed that X is equipped with its Borel G-algebraB. That is, B is the g-algebra
generated by the class of open subsets of X determined by 11-11. A random element V in X is an

F-measurable transformation from Q to the measurable space (x,B). The expected value of V,
denoted EV, is defined to be the Pettis integral provided it exists. That is, V has expected value
EV e X if f(EV) = E(f(V)) for every f € X* where x* denotes the (dual) space of all continuous

linear functionals on X. The definitions of independence and identically distributed for random ele-

ments are similar to those in the (real-valued) random variable case.
Consider a sequence of independent random elements {V;, n 2 1}, all of whose expected
values exist. Let {a,, n> 1} and {b,, n 2 1) be constants with 0 < b, T e. Then

{a,(V, — EV,), n 2 1} is said to obey the general strong law of large numbers (SLLN) with norming
n

constants (b,, n 2 1} if the normed weighted sum ' aj(V i EVj)/bn converges almost certainly to
=1

the zero element in X (denoted by 0), and this will be written

}n:ai(vj - EVp
= - —0ac. (L.1)

Herein, the main results furnish conditions on X, on the distributions of the {V,, n 2 1}, and on the
growth behavior of the constants (a,, n 2 1} and {b,, n 2 1} which ensure that the SLLN (1.1)
obtains. In most of the results X is assumed to be a Banach space, and in many of the results

{V,, n 2 1} is assumed to be stochastically dominated by a random element V in the sense that for
some constant D < oo

P11V, 11 >1t) <DP{IIDVII>t}, t20,n21, (1.2)
Of course, (1.2) is automatic with V=V, and D = 1 if the {V,, n 2 1} are independent and identi-
cally distributed (i.i.d.) and even in this case the results are new. In Section 3, SLLN’s are estab-
lished under geometric conditions on X whereas in Section 4, SLLN's are established without such
conditions. The SLLN problem was studied by Adler and Rosalsky [1, 2] in the random variable
case, and some of those results will be extended to the random element case in the current work.

Taylor [3] provided a comprehensive and unified treatment of results under whose conditions

nz An; V. —> 0 ac. where [ Vn, n= l) are independent, mean zero random elements in a real sepa-
) ")
F1

rable normed linear space and {ay;, 1<j<nn21l}isa triangular array of constants. Some of the
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arguments in Taylor’s monograph utilized a result of Robhatgi [4] which will now be stated.

(Rohatgi’s work generalized earlier work of Pruitt {5].)

THEOREM (Rohatgi [4]). Let (X, n21} be independent, mean zero random variables and

let X be an L, random variable for some p > 1. Suppose that {X,,n > 1} is stochastically dom-

inated by X in the sense that
PUIX,) >t) SP(IXI >t), t20,n21.
Let {a,;, 1<j<nn21 isfyi i = j 3
(ay; JSn,n2 1} be constants satisfying nlgn” a,;=0foreachj>1, jEilanjl = O(1), and

1 = Om-Vp-1)
o ! = 0D, a3

n
Then Ya,X; — 0 ac.
=1

In Theorems 8 and 9 and Corollary 2 of the current work, versions of some of the results
presented in Taylor [3] will be obtained under less restrictive conditions but only for the case where
a,=ayb,, 1 £j<n,n21, where (a,, n 2 1} and (b,, n 2 1} are constants. The arguments will
not involve Rohatgi’s theorem but, rather, will employ Corollary 1 below. Corollary 1 plays a role
in the proofs similar to the role that Rohatgi's theorem played in establishing the counterparts

presented in Taylor [3]. Corollary 1 has less stringent conditions than Rohatgi’s theorem when

a,;=a/b,, 1 <j<n,n2 1. Specifically, if that choice of {2 1 S j<n, n2 1) satisfies (1.3), then

£

LU O(n-l/(p-l)) (1.4)

o

which is stronger than the condition

]
by
of Corollary 1. Thus, if {ay, 1 <j <n, n 2 1} satisfies b/a, = O(n®) for some 1/2 < a < 1, then to

= Omp) (1.5)

invoke Rohatgi’s theorem requires that (1.4) and the moment condition E|1XIP < e hold where

p21+ Ti- 2 2, whereas to invoke Corollary 1 merely requires that (1.5) and the (weaker) moment
condition EIXIP < e hold where 2 > p 2 _(:_z 2 1. For example, for i.i.d. random variables
n
{X,, n 2 1) with EX; = 0, the classical Kolmogorov SLLN Y Xyn — 0 a.c. follows from Corollary
1
1 but not from Rohatgi’s theorem (which would require EX12 < o),
A SLLN for normed weighted sums of random elements in a real separable Banach space has
been proved by Mikosch and Norvaisa [6], but their result and the current ones do not entail each

other.
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For random elements in a real separable Banach space, the study of the SLLN problem dates
back to the pioneering work by Mourier [7] (see also Laha and Rohatgi (8, p. 452] or Taylor (3, p.
72]) wherein a direct analogue of the classical Kolmogorov SLLN was established. More precisely,

Mourier showed that if {V,, n 2 1} are i.i.d. random elements in a real separable Banach space and

if ELIV{ll < oo, then i (V;— EVy)/n — 0 a.c. (A new proof of Mourier’s SLLN has recently been
=1

discovered by Cuesta and Matran [9].) For random variables, the Kolmogorov SLLN was general-
ized by the Marcinkiewicz-Zygmund SLLN (see, e.g., Chow and Teicher [10, p. 122]) which, in
tum, was generalized by Feller {11]. A random element version of Feller’s result is presented in
Theorem 4 below wherein it is assumed that the Banach space is of Rademacher type p (1 < p < 2).
2. PRELIMINARIES.

Some definitions will be discussed and lemmas will be presented prior to establishing the main
results.

Let {Y,, n 2 1} be a Bemoulli sequence, that is, (Y,, n 21} are i.i.d. random variables with
P{Y; =1} =P{Y,; =~1) = 1/2. Let X be a real separable Banach space and let

X®=XxXXXXX - and define

CX)= {(vn, n21}e X°: Y Y,v, converges in probability }
n=1

Let 1 <p <2. Then X is said to be of Rademacher type p if there exists a constant 0 < C < o such
that
EIIY Y v I IPSCY Ilv,lIP
n=1 n=1
for all {v,, n 21} € c(x). Hoffmann-Jdrgensen and Pisier [12] proved for 1 < p < 2 that a real
separable Banach space is of Rademacher type p iff there exists a constant 0 < C < e such that
n n
EINIFVIIP<CY EIIV;IIP
1 j=1
for every finite collection {Vy, ..., V,} of independent random elements with EV;=0,
EllVjl1P <o, 1<j<n,

If a real separable Banach space is of Rademacher type p for some 1 < p < 2, then it is of
Rademacher type q for all 1 < q < p. Every real separable Banach space is of Rademacher type (at
least) 1 while the L,-spaces and £;-spaces are of Rademacher type min {2, p} for p 2 1. Every real
separable Hilbert space and real separable finite-dimensional. Banach space is of Rademacher type 2.

A normed linear space X is said to be Beck-convex if there exists an integer N > 1 and a

number 0 < & < 1 such that for all choices of {vy, ..., vy} X with | vl £1,1<j<N,
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vy £ -+ 2vyll SN(1-¢)

for some choice of + and - signs. This property has been extensively studied by Giesy [13]. A real
separable Banach space is Beck convex iff it is of Rademacher type p for some p>1.
A Schauder basis for a normed linear space X is a sequence {B,, i 2 1} < X such that for each

v € X there exists a unique sequence of scalars (t;, i 2 1} such that

m
lim Y f; =v. 2.1
m-—joo i=1
A sequence of linear functionals {f;, i 2 1} (called coordinate functionals for the basis {B,i21))
can be defined by letting fi(v) = t;, i 2 1, where v € X and (2.1) holds, and a sequence of linear

functions {U,,, m 2 1} (called partial sum operators for the basis (B;, i 2 1}) can be defined by

m
U, =Y £(v) B, veX,m21.
i=1
The residual operators {Q,,, m 2 1} are defined by

Q) =v = U (V), veX,m21.
A Schauder basis is said to be a monotone basis if {| {Up,(v)! |, m = 1} is a monotone sequence for

eachv e X.

A sequence of random elements {V,, n 2 1} in a normed linear space X is said to be (uni-
formly) tight if for each € > 0, there exists a compact subset K. of X such that P{V, e K¢} 21 -¢
foralln 2 1.

LEMMA 1 (Adler and Rosalsky [1]). Let X, and X be random variables such that X, is sto-

chastically dominated by X in the sense that there exists a constant D < e such that

P{1Xy! >t} < DP{IDXI > t}, t20. 22)
Then for all p > 0

EIX,IPI(1X,! < ) < DPP{IDXI >t} + DPYEIXIPI(IDXI <1),  t20. 23)

LEMMA 2 (Adler and Rosalsky [1]). Let {X,, n 2 1} and X be random variables such that
{X,, n 2 1} is stochastically dominated by X in the sense that there exists a constant D < es such

that

P{IX,! >t} S DP{IDX! >t}, t20,n21.

Let {c,, n 2 1} be positive constants such that [max cf ] L = O(n) for some p > 0 and
1<sjsn j=n c]f’

> P{1X| > Dc,} < e. Then forall 0 <M <o,

n=1



512 A. ADLER, A. ROSALSKY AND R.L. TAYLOR
3L EIX, 1P 10X, £ Mc,) < .
n=1 C“l’

LEMMA 3. Let X, and X be random variables such that X, is stochastically dominated by X

in the sense that (2.2) holds. Then

EIXoIl(I1Xy! > x) = [ P{IXpl >t}dt+xP(1Xgl >x), x20 2.4)
and
ElXplI(1Xg! > x) < D’EIXII(IDX] > x), x20. (2.5)

PROOF. Integration by parts yields (2.4), and then (2.5) follows immediately from (2.4) and
(22).0

LEMMA 4 (Adler and Rosalsky [2]). Let X be a random variable such that P{1X1| >t} is reg-
ularly varying with exponent p < -1. Then X € Lp for all 0 <p < -p and

EIXII(IX] >t)=(1 + o(1)) [;—%]tP(IXI >t} as t—oo,

The next lemma shows that stochastic dominance can be accomplished by a sequence of ran-

dom variables having a bounded absolute p-th moment (p > 1).

LEMMA 5 (Taylor [3, p. 123]). Let {X, n 2 1} be random variables such that

sup EIX IP < e for some p > 1. Then there exists a random variable X with E1X 19 < e for all
n2

0 < q < p such that
PUX, I >t} <P{IXI >t},t20,n2>1.

Finally, a remark about notation is in order. Throughout, the symbol C denotes a generic con-

stant (0 < C < ) which is not necessarily the same one in each appearance.

3. SLLN’S UNDER PROBABILISTIC AND GEOMETRIC CONDITIONS.

With these preliminaries accounted for, the first group of results may be established. The ran-
dom elements are assumed to be independent, and geometric conditions are placed on the real sepa-
rable normed linear space. The space is assumed to be a Banach space of Rademacher type p (for
suitable p) in Theorems 1-7, and it is assumed to be Beck-convex in Theorem 8. The next lemma is

the key lemma in establishing Theorems 1-4.

LEMMA 6. Let {V,, n > 1} be independent random elements in a real separable, Rademacher

type p (1 £ p < 2) Banach space X. Suppose that {V,, n 2 1} is stochastically dominated by a ran-
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dom element V in the sense that (1.2) holds. Let {a,,n 21} and {b,, n 2 1} be constants satisfy-

ing 0 <b, T e and

bP | 1aIP
> [ = 0. 3.1
isisn 13IP |5 b}
If
T P(11a,ViI >Db,)} < e, (3.2)
n=1
then
n
2
gaj(vj - EV{I(1 13,Vj! | < D?b))
= - 0ac 3.3)
bl'l
PROOF. Let
b,
Ch= R Y, =V I(IIV, Il £D%,), n21. (3.4)
Then forn 21
m a(Y; ~EY) n a(Y, - EY)
sup Bl =1 i _zaJ(J LT
m>n j=l ] J’=l bj
m a(Y; - EY;
=supEI|Z————a’ 1 ’)IIP
m>n j=n+l bj
m El le - EY.lIP
SsupC Y, ————— (since X is of Rademacher type p)
m> jentl C,P
= EI IYjI P
SC® ¥ ———— =0(l) (by Lemma 2),
j=n+l C,P
whence
n a(Y; - EY:
Eny3NEY _gie 0
1 i

for some random element S in X implying

n a(Y: - EY))
popend Ml ah Y}
P

Since convergence in probability and a.c. convergence are equivalent for sums of independent ran-

dom elements in a separable Banach space (see It and Nisio [14]),

converges a.c.

5 3(Y; ~ EY)

=1 b;

implying via the Kronecker lemma that

2 3(Y; - EY)
=1

b, — 0 a.c. 3.5
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However, P{lim inf [V, = Y]} = 1 by the Borel-Cantelli lemma since (1.2) and (3.2) ensure that
n—oo

T P(V,#Y,) = 3 P(I1V,11 >D%,) <D ¥ P(11VIl > Dc,} < o=.

n=1 n=1 n=1

The conclusion (3.3) then follows directly from (3.5). 0

In the first theorem, there is a trade-off between the Rademacher type and the condition (3.6);

the larger the Rademacher type p, the condition (3.6) becomes less stringent (since b, /la,| .

THEOREM 1. Let {V,, n 2 1} be independent random elements in a real separable,
Rademacher type p (1 < p < 2) Banach space. Suppose that {V_, n 2 1} is stochastically dominated
by a random element V in the sense that (1.2) holds. Let {a;, n 21} and {b,, n 2 1) bc constants

satisfying 0 <b, T e, b/la 1 T,

o 5'al O(n) (3.6)
—_— = n), o
la,IP E, bP
and
b n la;l
s - o). 3.7
Ianl =1 bj

If the series of (3.2) converges, then the SLLN

n
X 3(V; - EV)
=l o — 0ac.

n

obtains.
PROOF. Define {c,,n > 1} and {Y,, n 2 1} as in (3.4). Note at the outset that (3.7) ensures
that ¢, < Cn, n 2 1, and so for all j 2 1, by (1.2) and (3.2)

T P(11V;l1 > CD™) <D 3 P(11VI1 > CDn)

n=1 n=1

<D Y P{IIVII>Dc,} <eo.

n=1
Thus, El IVjI | < e, j 21, and so (see, e.g., Taylor [3, p. 40]) V;, j 2 1, all have expected values.
Also, ¢, T o by (3.6).
Next, (3.3) holds by Lemma 6 and so it only needs to be demonstrated that

n
Y, aEVJI(11V;11 > D)
=1

- 0.
bn
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To this end,

i L Env, 110 1V,11 > D)

n=l Cn

<D? Y 4 ELVIHIIIVII>De,) (by (2.5)
n=1 Cn

-p? ¥ L S ENVIIDe < 11VI1 < Deyyy)

n=l ~n j=n

oo j+l
<D? Y ElIVIHIDe < 1IVII€Deyy) X —

=1 n=l ~n
i C(j+1
<D? Y ¢,y P(Dc < 11 VI £ Dcyyy) CGHH (by 3.7)
Z j+l { i) ¥ Cisl
=1

<C 3 jP(D; < 11VI1 S Dcy,y)
Pt

o
=CY ¥ P(Dg< HVII S D)

j=1 n=1

=C ¥ 3 P(Dg< 1V € Deyy)
n=1 j=n

=C 3 P(1IVI] >Dey) < (by 3.2)),
n=1

whence by the Kronecker lemma

n n
ny a; EVI(I IVjIl > chj)ll Zlalel AARNQ AN >D2cj)
=1 j=1
b, s b,

=o0(1).0

REMARK. Apropos of Theorem 1, the authors are able to show through a slight modification
of the argument that the condition by/la,] T can be replaced by the somewhat weaker condition

b,/la,l = O(inf by/la.l).
n' | 3y O(Q/a])

THEOREM 2. Let {V,, n 2 1} be independent random elements in a real separable,

Rademacher type p (1 S p < 2) Banach space. Suppose that {V,, n 2 1} is stochastically dominated
by a random element V in the sense that (1.2) holds, and suppose that El IVI| < o, Let

{a,, n> 1) and {b,, n > 1)} be constants satisfying 0 < b, T e, (3.1), and

n
Y lal = O(by). (3.8
=1
If the series of (3.2) converges, then the SLLN

X (V- EVp
=L 5 — 0O ac.

n
obtains.
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PROOF. Define {c,,n2 1} and (Y, n 2 1} as in (3.4). Note at the outset that (1.2) guaran-
tees that E| IV || <ee, n 21, and so V,, n 2 1, all have expected values. Now (3.3) holds by
Lemma 6 and so it only needs to be demonstrated that

,?::i 4EVI(I V11 > D)

Y - 0.

n
To this end, note that (3.1) ensures ¢, — e, whence by (2.5), EllVIl < e, and the Lebesgue dom-

inated convergence theorem

TEVI(1V, 11 >Dx) 1 SENV, (V11 > Dx,)
SDEIVIIIIIVILE > Dc,) = o(1).
But then by (3.8) and the Toeplitz lemma

n n
1Y aEVI( Vi1 >D%x)Il 3 Ial HEVI(11Vjl1 > D)l
=l

< £ =o(1).0
b, b o)

n

THEOREM 3. Let {V_, n 2 1)} be independent random elements in a real separable,
Rademacher type p (1 < p < 2) Banach space. Suppose that {V,, n 2 1} is stochastically dominated

by a random element V in the sense that (1.2) holds, and suppose that
P{11VI1 >t} is regularly varying with exponent p < -1. 3.9

Let {(a,, n 2 1} and {b,, n 2 1} be constants satisfying 0 < b, T o and (3.1). If the series of (3.2)

converges, then the SLLN

n
2 3(V;— EV)
1

. — 0 ac.

obtains.

PROOF. Define {c,,n 21} and (Y,, n 21} as in (3.4). Now El IVI| < e by Lemma 4 and
) '(1.2) ensures that E[ IV || < e, n 2 1, implying that \;n, n 2 1, all have expected values. Again
(3.3) holds by Lemma 6 and so it only needs to be demonstrated that

n
Y, EVJI(11V;11 > D)
=1

0.
5 -

n
To this end, it follows from (2.5), (3.1), and Lemma 4 that for all n 2 some n,
ENLIV, LIV, > D%,) <DEINVIIHIVIE > Dey)
S Ce,P{1IVII > Dc,).

Then by (3.2),
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¥ LENV,II11V,11 > D%,) <C+CEP(IIVII >De,) <

n=1 Cn n=ngy
and so
n n
113 4EVJI(11V;11 > Dl | Y 1 lEHIV;II(HTV;ET > D)
=1 =1
< =o(1
b b, o(1)

by the Kronecker lemma. (0

REMARK. Apropos of Theorems 1, 2, or 3, Example 1 of Adler and Rosalsky [2] shows that

the Theorems can fail without the assumption (3.7), (3.8), or (3.9), respectively.

The ensuing lemma can be helpful in verifying the conditions (3.6), (3.1), (4.6) of Theorems 1,

2, 3, or 11, and it will be used in the proof of Theorem 4.

LEMMA 7 (Adler and Rosalsky [1]). Let {c,, n = 1} be constants with 0 < c¢f/n T for some

p > 0. Then

o1

cP Z——P- = O(n)

= G

iff
ch .
lim inf — > r for some integer r > 2.
n—oo Cn

" The next theorem is a random element version of a classical result of Feller [11] which had

extended the Marcinkiewicz-Zygmund SLLN to more general norming constants.

THEOREM 4. Let (V,, n 2 1} be i.i.d. random elements in a real separable, Rademacher type
P (1 < p < 2) Banach space and let {b,, n 2 1} be positive constants. Suppose that either

. b, b
(i) EV, =0, —nﬂ-l, —:T forsomea>l

n
or
b,
) ElNVill=e, —T.
n
If
)_jlpuuvlll >b,} < o, (3.10)
n=
then
n
2V

i=t

— 0 a.c. (3.11)
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PROOF. In either case b, T e and bf/n T. Now by/nP T where B = « in case (i) and p = 1 in

case (ii). Thus,

P
Jim inf 22 Zliminf—(z—';)— = 2P 52,

ne  bP n—e PP

and so by Lemma 7
o 1
bf Yy — = O(n).
j= bf
Then by Lemma 6

3 (V;- EVI( 1Vj11 S b))
= - Oac (.12)

bn
In case (i), by/n 1 and (3.10) entail (see Chow and Teicher [10, pp. 123-124])

IIiEVjI(HVjII>bj)II iE|IV1III(IIV1II>bj~)

= < H = o(l)
b, b,

which when combined with (3.12) yields (3.11) since EV, = 0.

In case (ii), in view of (3.10), necessarily b,/n T o and so (see Chow and Teicher [10, pp.
123-124])

n
1Y EVI(HV;HE < byl iEIlVllll(llVlHSbj)
=l <
b, b,
yielding (3.11) via (3.12).0

= o(l)

REMARK. In the special case where EV, =0, El1V{l19< e for some 1 Sq<p<2,and

b, = n"4, n 2 1, Theorem 4(i) reduces to the Marcinkiewicz-Zygmund type SLLN

n
Y Vyn'@ - 0 a.c. of Woyczyhski [15]. Woyczyhiski’s result has been improved by de Acosta [16].
=

For some related results, see Wang and Bhaskara Rao [17].
THEOREM 5. Let {V,, n 2 1} be independent random elements in a real separable,
Rademacher type p (1 < p < 2) Banach space and suppose that
sup EIIV_|IP < oo, .1
Sob " @.13)

Let {(a,,n 21} and {b,, n 2 1} be constants such that 0 < b, T o and

% = O(n"YP(log n)~19) for some 0 < q < p. (3.14)
n

Then the SLLN
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n
=1 - - Oac. (3.15)

n

obtains.

PROOF. Condition (3.13) ensures that V, n 2 1, all have expected values. Let ¢, =b/la,l,

Y,=VIUIV I <c),n2 1. Now by (3.13) and (3.14)

o EIY 1P = EIIV,IIP >
< n <yl < w (3.16)
n=1 c¥ n=1 e =1 Cf

implying (see the proof of Lemma 6)

= — 0Oa.c. (3.17)
bn
Now
o 0o = ELIV,IIP
ZP(Vn;éYnl:ZP(IIVnII >SSy —— < (3.18)
n=1 n=1 n=1 cl?

recalling (3.16), whence by the Borel-Cantelli lemma P{lim inf [V, = Y,]) = 1 implying via (3.17)
n—eo
that

n
=1 — 0ac. (3.19)
b,

Next,

> L Env v e

n=1 Cn

= SRV, >c,) + 3 El_j P{IIV,I1>t}dt  (by (2.4)
n=1 n=l “nc,

« 1 7 EIIV,IIP
<C+Yy— j —L _dt  (by (3.18)

n=1Cn Cq P

SC+CY L <o (by 3.13) and (3.16)),
n=1 C.-l:

and so by the Kronecker lemma

n n
Y aEVI(HTV T > el > IGIEHTVHIO TV > ¢)
=1 < £
b, b,
yielding (3.15) via (3.19).0

=o(1)

THEOREM 6. Let {V,, n 2 1} be independent random elements in a real separable,
Rademacher type p (1 < p < 2) Banach space. Suppose that {V,, n > 1} is stochastically dominated

by a random element V in the sense that (1.2) holds, and suppose that E| IV |19 < e for some
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1 <q<p. Let {a,, n21) and {b,, n 2 1) be constants satisfying 0 < b, T e, (3.8), and

2 _ om V), (3.20)
by,
Then the SLLN
n
=1 — 0Oadc. 3.21)
obtains. b,

PROOF. Note that (1.2) entails El 1V, 119 < e, n 2 1, and hence V, n 2 1, all have expected

values. Letc, =by/la,l, Y, = VIV, <n¥), n21 Now

~ EIIY_IIP = -Pq
—-—-L—SDZ n

n=1 C,? n=1 Cj

+DP 3 lp EIIVIIPI(IIDVI | <nY9) (by (2.3)

n=1 Cq

P(IIDVII >nl4)

©o n
SC+CY nP4 ¥ EIIVIIPk-1)"I< IIDVII kY9
n=1 k=1

(by (3.20) and El 1 V119 <e0)

=C+CY EIVIIP(k-1)Y9< 1 IDVII <k¥9) ¥ nP4
k=1 n=k

SC+C Y k@ PAE|IVIIPI((k-1)"4< 1IDVII < k¥9)
k=1

<C+C YENVIII(Kk-1)YI< 1IDVII k9
k=1

=C+CEllIVIlico
implying (see the proof of Lemma 6)

2 3(Y; - EY)
=1

— 0 ac. (3.22)
b,

Now by (1.2) and El V] 19 < o,

Y PV, 2Y,) = f; P{1 1V, >n") snf‘, P{1IDVII >n!} < e,

n=1 n=1 n=1

and so by the Borel-Cantelli lemma P{lim inf [V, = Y]} = 1 implying via (3.22) that
n—oo

n
Y a(V; - EY)

= . - 0ac. (3.23)
n

Next, by (2.5), EllVIl < e, and the Lebesgue dominated convergence theorem

ELIV,II(1IV, 11 >nY) < D% EIIVIII(IIDVII > n"9) = o(1),
whence by (3.8) and the Toeplitz lemma
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n
1Y aEVI(IV;IH > jY9) ) 3 EADARMAN) (AN AT )

j=1 j=1
=o(1
b, < 5 o(l)

n
yielding (3.21) via (3.23).0

The following Corollary is an extension of Theorem 2 of Adler and Rosalsky [2] (which, in
tum, is an extension of Theorem 3.1 of Fernholz and Teicher [18]) and establishes a SLLN for
normed weighted sums of stochastically dominated random variables. It will be used in the proofs

of Theorems 8 and 9 but may be of independent interest.

COROLLARY 1. Let (X, n 2 1} be independent random variables and let X be an L ran-
dom variable for some 1 < p < 2. Suppose that {X,, n 2 1} is stochastically dominated by X in the
sense that there exists a constant D < e such that

P{IX,] >tl$i)PllDXl >t), t20,n21.
Let {a,, n 2 1} and {b,, n 2 1} be constants satisfying 0 < b, T oo, a,/b, = O(n~VP), and (3.8).

Then the SLLN

% 405~ EX)
=1

— 0 a.c.
bn a.c

obtains.

PROOF. Since (R, I'l) is a real separable, Rademacher type 2 Banach space, the Corollary fol-

lows immediately from Theorem 6 withp=2andq=p<2.0

THEOREM 7. Let {V,, n 2 1) be independent random elements in a real separable,
Rademacher type p (1 < p < 2) Banach space. Suppose that {V,, n 2 1} is stochastically dominated
by a random element V in the sense that (1.2) holds, and suppose that EI IVIIP < os. Let
{a,, n2 1) and {b,, n 2 1) be constants satisfying 0 < b, T o, (3.8), and (3.14). Then the SLLN

n
2 3(V; - EV)
E L 0ac
) b,
obtains.

PROOF. Using the truncation Y, = V_ I(1 1V, I < n'P), n 2 1, the argument is a slight

madification of that used to establish Theorem 6. The details are left to the reader. O

REMARK. An interesting question which we are unable to resolve is whether Theorem 7

holds with (3.14) replaced by the somewhat weaker condition a /b, = O(n"VP). Moreover, Theorem
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7 should be compared with Theorem 10 wherein the {V,, n 2 1} are (uniformly) tight.

The next Theorem establishes a SLLN for normed weighted sums of random elements in a real
separable normed linear space which is Beck-convex. It should be compared with Theorem 5 of

Taylor and Padgett [19] (or Theorem 5.3.1 of Taylor [3, p. 137]).

THEOREM 8. Let {V,, n 21} be independent random elements in a real separable normed

linear space which is Beck-convex and let {a,, n = 1} and {b,, n 2 1} be constants satisfying

n
a,>0,n21,0<b, T o, Y a;= O(b,), ay/b, = Om"P) for some 1 < p <2, and
j=1

(a5 — dy) = o(by) (3.24)
1

where d;, = {nin a,n21 1If suy El1V_ 119 < e for some q > p, then the SLLN
<jsn n2

> 3(V; - EV)
1
b

— 0ac. (3.25)

obtains.

PROOF. Without loss of generality, it may and will be supposed that EV, =0, n 2 1. Sup-

pose, initially, that the {V,, n 2 1} are uniformly bounded in the norm by a constant, that is,

n
su? 11Vl < C ac. Then, since nd, < 3 a; = O(by),
n> =1

NEavill 1Y @-davjil Y Vi
= < PR
b"l bl'l bll
CY -4y ClZ VI
<& + F - 0ac.

b,
by (3.24) and a SLLN of Beck [20, Theorem 10] (which is Theorem 4.3.1 of Taylor [3, p. 87))

thereby proving the theorem when su? HV, I SCac.
>
Next, in general, define

Xo=VIUIV 1 SM), Y,=VI(IIV,I1>M), n21,
where 1 <M < e is a constant. By the portion of the theorem already proved,

Y a(X; - EX;)
1

— 0a.c. (3.26)
by,

Note that forn > 1,
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E(MTIV HIAIV T > M)

EllY 1l = e
< ELIV, AUV T >M) ._C
M- T oMt
n
and so in view of Y a= O(b,)
=1
n n n
1Y a(Y; - EYplI > allY;ll Y aEllY;l]
= < F + L
bll bll bl'l
n n
Y a(l1Y;l —ENIY;l) 23 aEllY;l
_ Fl 4L
bl’l bn
n
Y a(11Y;11 = ElIY;l)
<H < (3.27)
b, Ma!
Now {I1Y,11 —EllY_ ||, n2 1} are independent mean 0 random variables with

sup E|11Y, 11 - EI1Y, 11

q
<29 sup EIN1Y,119< 29 sup EI 1V, 119 < oo,
A b on

By Lemma 5, there exists a random variable Y with E1Y IP < e such that

PU1IY, 11— LY,

>t} SP{IYI >t}, t20,n21,
whence by Corollary 1

> a(l1Y;11 = El1Y;11)

= — 0ac.
b,
But then by (3.26) and (3.27)
n n
D YEAAN 1Y a(X; - EXpll
lim sup = < lim sup 1
n—eo n n—soe b,
1Y a(Y; - EYpI 1
+ lim sup =
n-—poo bn
< a.c.
Mt

and since M is arbitrary, the conclusion (3.25) follows. O

4. SLLN’S UNDER PROBABILISTIC CONDITIONS.

In this section, SLLN’s are obtained without imposing geometric conditions on the Banach
space. As in Section 3, moment conditions are placed on independent random elements and restric-
tions are placed on the constants {a,, n 2 1} and {b,, n 2 1}. In Theorem 9, the Banach space is

assumed to admit a Schauder basis and in Theorem 10, the independent random elements in a
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Banach space are assumed to be (uniformly) tight.
For a Banach space admitting a Schauder basis, recall the definitions of (f;, i 2 1},
{Up m 2 1}, and {Q,,, m 2 1} presented in Section 2. Theorem 9 should be compared with

Theorem 5.1.4 of Taylor [3, p.114].

THEOREM 9. Let {V,, n 2 1} be independent, mean zero random elements in a real separable
Banach space admitting a Schauder basis {B;, i 2 1). Let {a,, n2 1} and {b,, n 2 1} be constants
satisfying 0 < b, T e, (3.8), and

e O(n"P) .1
bl’l
for some 1 < p < 2. Suppose that there exist random variables {X;,i2 1} and (Y,,, m21) and a

constant D < oo such that
P{If,(V)I >t]SDP(IDXiI >t} t20,n21,i21,
P['I 1Q(V)I'I - El 1Qu (V! | >t} < DP{IDY,| >t}, t20,m21,n21,

sup EIX:IP < oo P<oo
Sup X; x rsul;p;Elle < oo,

and
li =
min“ sngY ElQ,(V)Il =0. “4.2)
Then the SLLN
n
X aV;
E —0ac
n
obtains.

PROOF. It follows directly from Corollary 1 that

n

Zl afi (V)
= 5 — 0 ac. foreachi2 1
n
and
n
j}_‘ila].l(l 1Qu(Vp!Il - El 1Qm(VpI)
Ty = 5 — 0 ac. for eachm 2 1. 4.3)
n
Then
n n
Yy ajVj >aV,
Huo, | = o= 13 HHB
= . h
m bn = 1 bn 1
n
Taf(v,)

<y |IE

=1
’—b— 1Bl - 0 ac. foreachm > 1. @4

m |
=1 n

-
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Thus, by (4.4), (4.3), (3.8), and (4.2)

vl Tav, | |iaJQm(vj)| |
—__j=lb.. < 1U, Hb,, o+ — :
n
ZaV;
< 11U, J-bn 1+ Ty + Coup E11Qu (V)1

— 0 a.c. as first n—oo and then m—eo. O

THEOREM 10. Let {V,, n 2 1} be a (uniformly) tight sequence of independent, mean zero
random elements in a real separable Banach space X. Let {a,, n21} and (b,, n 2 1} be constants
satisfying 0 < b, T o, (3.8), and (4.1) for some 1 < P < 2. Suppose that {V,, n 2 1} is stochasti-
cally dominated by a random element V in the sense that (1.2) holds, and suppose that
EIIVIIP < es. Then the SLLN

23V;

=l

— 0ac.
n
obtains.

PROOF. Let h be a norm-preserving, bicontinuous, linear mapping of X into C[0,1] (= the
Banach space of all continuous real-valued functions y on [0,1] with norm | lyl| = oss':gl ly(®)1).
The Banach space C[0,1] admits a monotone basis where | 1Q,(y)!I | S Ilyll and If (y)I < llyl|
for each y € €[0,1] and m 2 1 and where {11Q,,(y)! |, m 2 1} is a monotone decreasing sequence
for each y € C[0,1]. Then {h(V,), n 2 1} is a (uniformly) tight sequence of independent, mean zero
random elements in C[0,1]. Now for arbitrary € > 0, choose u > 0 so that

DEIVIIIIVII >u)S-§-. Then Lemma 3 provides E1 1V, | II(11V,11 >u)$% foralln2 1.

£

By (uniform) tightness, a compact subset K of C[0,1] may be chosen so that P{h(V,) € K} < 3

for all n 2 1, whence EI IV 1 II(11V_ 1] S ulh(V,) ¢ K) < % for alln 2 1. Since | 1Q,1I {0
for each y in the compact set K, Dini’s theorem ensures that there exists an integer m, such that
su;:(l QM1 S% forall m 2 m,. Then forallm2m,andn21
ye

ElNQ,((V ) S ENQ,(V)I(I IV, 11 SuIh(V,) e K)I I

+ELV, IV, S wIh(V,) €K) + BNV IV, I >u) < e
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thereby establishing (4.2) for the random elements {h(V,), n 2 1). The identifications X; = 11V 1|

and Y, = I IVII + DEIIVII for all i 2 1 and m 2 1 ensure that the other conditions of Theorem 9

hold. Thus
n n n
| IEajVjI | | Ih(ZajVj)I | | Izajh(Vj)l |
=1 = =1 = =l
o o, b —0acO

REMARKS. (i) Whena,=1,b,=n,n 21, and sup E1 1V, IP < o for some p > 1, Theorem
n>

10 in conjunction with Lemma 5 will establish the SLLN of Taylor [3, Corollary 5.2.9, p. 133]. As
pointed out by Taylor [3, p. 133], that same SLLN can be obtained from Theorem 5.2.8 of Taylor

[3, p. 131] but under the stronger assumption that su? El 1V, IP < e for some p > 2.

n>
(ii) Theorem 10 can fail if p=1 and El IVI| = ce. For an example, see Taylor [3, Example 5.2.3,
p-135).

The next Corollary should be compared with Theorem 5.2.8 of Taylor [3, p. 131].

COROLLARY 2. Let {(V,, n 21} be a (uniformly) tight sequence of independent, mean zero
random elements in a real separable Banach space. Let {a,, n 2 1} and {b,, n 2 1} be constants

satisfying 0 < b, T o, (3.8),and (4.1) forsome 1 Sp<2. If

s'::?EHVnIIq<°°forsomcq>p, 4.5)
then the SLLN
n
X3V,
E! — 0 ac.
n
obtains.

PROOF. Condition (4.5) ensures by Lemma 5 that (1.2) obtains and EI IV P < es. The
Corollary then follows from Theorem 10. O

In the next Corollary, the sequence {V,, n 2 1} is i.i.d. and the moment condition (4.5) is
weakened to EI 1V |P. The Corollary should be compared with Theorem 5.1.3 of Taylor
B3, p- 1121

COROLLARY 3. Let {V,, n 2 1} be i.i.d. mean zero random elements in a real separable
Banach space. Let {a,, n 2 1) and {b,, n 2 1} be constants satisfying 0 < b, T o, (3.8), and (4.1)

for some 1 < p < 2. If EI IVl IP < oo, then the SLLN
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n
2aV;

=1

— 0 ac.

obtains.

PROOF. Since the i.i.d. hypothesis ensures that {V,, n = 1} is automatically (uniformly) tight

(see Taylor [3, p. 121]), the Corollary follows immediately from Theorem 10. O

REMARKS. (i) In the particular case where a, = 1, b, = n, and p = 1, Corollary 3 reduces to
the SLLN of Mourier [7].
(i1) A Fréchet space is a complete linear metric space. Using Theorem 10, a SLLN may be obtained
for random elements in a real separable Fréchet space F which is a locally convex space with a

countable family of seminorms {p,, k > 1} defined on it such that the metric d is defined by

il Prx —Y)
dxy)=Y—=""7"  forxyeF
L T — Y

The details will not be given since the argument parallels that of Theorem 5.2.10 of Taylor [3, p.
136]. (Corollary 2 plays the same role in the proof as Theorem 5.2.8 of Taylor (3, p. 131] played in
proving Theorem 5.2.10.) In fact, almost all of the results in this section have parallel results for

Fréchet spaces.

In the last theorem, there is no independence assumption on the sequence of random elements.
Moreover, the space is equipped with a seminorm p which is not necessarily a norm and thus the

result is applicable to a larger class of spaces than real separable normed linear spaces. The
definition of random element is analogous to that discussed in Section 1 for real separable normed

linear spaces.

THEOREM 11. Let {V,, n 2 1} be random elements in a real separable seminormed linear

space with seminorm p. Suppose that {V,, n 2 1} is stochastically dominated by a random element

V in the sense that there exists a constant D < = such that

P{p(V,) >t} S DP{p(DV) > t}, t20,n21.
Let {a;, n 2 1) and {b,, n 2 1} be constants such that 0 < b, T o and

b;
[1 ]}:-b— = O(n). (4.6)

s,s;:lal i
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If

iP{p(anV) > Db, } < e,

n=1

b

PROOF. Set Y, =p(V,),n21, and Y = p(V). Then by Theorem 2 of Adler and Rosalsky [1],

then

— 0 ac.

[FZ%V ):'a,'p(V,)
b,

—>0ac.O
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