Internat. J Math. & Math. Sci. 477
VOL. 12 NO. 3 (1989) 477-486

ON THE CONTINUITY OF THE VECTOR VALUED
AND SET VALUED CONDITIONAL EXPECTATIONS

NIKOLAOS S. PAPAGEORGIOU

University of California
1015 Department of Mathematics
Davis, California 95616

(Received May 12, 1988 and in vevised form January 29, 1989)

ABSTRACT. In this paper we study the dependence of the vector valued conditional
expectation (for both single valued and set valued random variables), on the o—field and
random variable that determine it. So we prove that it is continuous for the Ll(X)
convergence of the sub—o—fields and of the random variables. We also present a sufficient
condition for the Ll(X)—convergence of the sub—o—fields. Then we extend the work to the
set valued conditional expectation using the Kuratowski—Mosco (K—M) convergence and
the convergence in the A—metric. We also prove a property of the set valued conditional

expectation.
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1) INTRODUCTION

The purpose of this note is to study the dependence of the vector valued conditional
expectation (for single valued and multivalued random variables), on the two quantities
that define it. Namely on the sub—o—field and on the random variable.

Let (9, %, 4) be a complete probability space and X a Banach space. The

following are well known for X—valued random variables:
(a) IffeL (X) {L }n>1 is an increasing (decreasing) sequence of sub—o—fields

-N\1
1usi

2;n_ ) 1
then E M -3 E*f in L'(X) and also p—a.e..
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This theorem, known in the literature as the "Neveu—Ionescu Tulcea theorem", can
be found in Neveu [8], proposition v—2—6. It is a particular case of the "martingale
convergence theorem" (see Metivier [7], corollary 11.8).

(b) I £, -5 f in L(X) and 5 is a sub—o-field of 5,

then 1320fn 5B i Li(x).

This is a consequence of the fact that the vector valued conditional expectation is a
continuous, linear operator on Ll(X) (see Neveu [8]).

Combining (a) and (b) above, it is easy to see that the following is true:

(c) If {Z,, i:}n>l are sub—o—fields of ¥ asin (a) and f S.fin LI(X),

then E}Jnf11 % in LY(X).

In this paper, we examine what happens if the sequence {)Jn}n>1 of sub—o—fields of

¥ is not necessarily monotone increasing. Our work extends those of I-).N. Nghiem [9] and

Fetter (3], who dealt with single valued random variables with values in R.

2) PRELIMINARIES
Let (Q, X, u) be a complete probability space and X a separable Banach space.

We will be using the following notations:

Pf( c)(X) = {A ¢ X: nonempty, closed, (convex)}
and P(w)k( c)(X) = {A ¢ X: nonempty, (w—) compact, (convex)}.

Alsoif A €2%\{0}, we define |A| = sup {Jlx]l : x ¢ A} ("norm" of A), o(x , A)
= sup {x*, x): x € A} x* € X* (support function of A) and for every zeX, d(z,A)
= inf{]|z—x]|| : x ¢ A} (distance function from A).

A multifunction F: Q- Pf(X) is said to be measurable, if for all zeX,
w-d(z, F(w)) is measurable. Other equivalent definitions of measurability of a
multifunction can be found in Wagner [14].

By S%\ we will denote the set of integrable selectors of F(-). So:

Sk = (£(+) e L'(X): £(w) € F(w) pace}.

. . 1 4
It is easy to show that Sll, is nonempty if and only if inf{||x|: x e F(w)} ¢ L e We
. . 1 .
say that F(-) is integrably bounded if and only if w- |F(w)| isan L i function. In
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this case Sl‘lﬂ # 0. Also using S%\ we can define a set valued integral for F(-) by setting
1
F= {j £ feSi).
J Q Q F
Let 20 be a sub—o—field of ¥ and let F: Q- Pf(X) be a measurable
multifunction s.t. S%‘ # 0. Following Hiai—Umegaki [4], we define the set valued

conditional expectation of F(-] with respect to Ly, to be the Ly—measurable

%

multifunction E “F: Q - Pf(X) for which we have:
1 Zos ¢ ol
S =cl {E “f: f e Si}
£ Op F
the closure taken in the Ll(X)—norm. If F(-) isintegrably bounded (resp. convex

2"F(-).

On Py(X) we can define a (generalized) metric, known as the Hausdorff metric, by

valued), then so is E
setting:
h(A,B) = max{sup(d(a,B), acA), sup(d(b,A), beB)}.

Recall that (Pf(X), h) is a complete metric space. Similarly on the space of all
Pf(X)—va.lued, integrably bounded multifunctions, we can define a metric A(-,-) be
setting A(F,G) = IQ h(F(w), G(w)) dp(w). As usual, we identify Fl(-) and F2(-), if

Fl(w) = F2(w) p—a.e.. The space of Pf(X)—-va.lued, integrably bounded multifunctions,
together with A(:,-) is a complete metric space.

*
A multifunction M: ¥ - P_, (X) is a set valued measure, if for all x* X

. wke
A - o(x , M(A)) is a signed measure.
Also let us recall a notion of convergence of sets that we will be using in the sequel.

Solet {A_, A} ,; c2%\(0}. We set:

. s
s—lim A= {xeX: Xp = X, X € An’ n> 1}

and w-mA = {xeX: xk—w-»x, Xy eAnk, n; <y <..<m <.}

Here s denotes the strong topology on X and w the weak topology. We say that
the A 's convergeto A is the Kuratowski—Mosco sense, denoted by A n K-M, A, if

w—ﬁEAn=A=s—li_mAn.
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Finally, let us recall two notions of convergence of sub—o—fields of E. The first was used

by Nghiem [9]. So we say that {¥ } ; Ll(X)—converges to T (denoted by
1 . B pX X
D LX) , %) if and only if for every f e LI(X), EYM-SEfin Ll(X). If to each I,

L
we associate E '(+) € .Z(LI(X)), then we see that this convergence of the sub—o—fields is
the convergence of the corresponding continuous, linear operators in the strong operator
topology on .Z(LI(X)) (pointwise convergence).

The second notion was used by Fetter [3]. So we may say that lim % = % if and

aly if liminfE, = V 0 % 5 = n

only if limin = VvV N = limsup ¥_ =
0 k=ln=k " n

[+ 4] -
n v I =%
k=1n=k D

3) SINGLE VALUED CONDITIONAL EXPECTATION
Let (2, %, u) be a complete probability space, {En, }:‘.}m 1 sub—o—fields of £ and
X a Banach space.
. 1 .
THEOREM 3.1: Iflim 5 =3, then 5 L(XL5
© [« o0
PROOQOF: Let Kn = kln Ek and Ln =N Ek Clearly n21 Kn =

k=n
and for every n21, wehave L c% CK . Let fe LI(X). We have:

v L
v L =
n=1 »°

I 5L L
IE % —E%), < IE " —E Pt + I|E "t —EM),

£ K %L L g
= |E®E % —E "E "f, + IE % —EM]|,.

Recall that the vector valued conditional expectation is an Ll(X)—contraction. So

we have:

T K T L K L
IE " "f-E "E "I, <|E "{-E "fi|,
K : 5L
<IE “f—EM), + EY—E Py,
So finally we have:

5 L : K. 3
IE 2t — B, <2 |E PE—EX), + | B _EM), 40 as e

1 .
. L (X
from the "Neveu—Ionescu Tulcea theorem" (see section 1). Therefore Z, LX) 5

as claimed by the theorem.

1 ¢ 8 . 1
TREOREM 3.2 If T, 2L 5 and £ in L'(X),

-

)
then E Pf, -+ B in L'(X).
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PROOF: For every n>1, we have:

g : ) 5 I
%
IE ™, — E*l, < IIE ', —E "f|A|1 +[IE o~ EX),

)
<Jif, £, + IE Pt — X

5 .
But by hypothesis ||fn - f||1 -0 and ||E *f— Ezfll1 +0 as n- . Thus finally we

L
have that ||E nfn - Ezfll1 -0 as n-o.
Next we will determine a sufficient condition for the LI(X)—convergence ofa
sequence {% } ., of sub—o—fields of L.
For this v;e will need a stronger hypothesis on the Banach space X. So assume that

X is strictly convex.

)
THEQREM 3.3: If for every AeZ and for every xeX, {E "x,(-)x} 5, is

LI(X)—convergent,

. 1 .
then there exists ¥ a sub—o—field of L s.t. Zn LX), L

)
PROOF: For every n31,set T (f) = E ", f e L}(X). Then T ¢ £(L'(X)) and

(ITnll <1 for all n>1. Clearly from our hypothesis, given any simple function s(-),
{Tn(s)}1121 is LI(X)——convergent. We claim that for every f ¢ Ll(X), {Tn(f)}nZI is
LI(X)-convergent too. To this end this ¢ > 0 be given. We can find s(-) simple
function s.t. ([f—-s[l1 < €. Also there exists n 2 1s.t. for n,m?> ng, we have ||Tn(s) -
T ()l < €/3. So finally for n, m2 n, we have:

IT_ () = T_ (Ol < ITy(0) = Ty@ll; + ITy(®) — T@lly = 1T (8) = Try(Dly

<2 sl + IT(5) ~ Tyl < e

Therefore {Tn(f)} 1 8 Ll(X)—Cauchy, thus it converges in LI(X) to T(f) and
Te J(LI(X)) (see Kato [5], p. 150). It is easy to see that T(-) is idempotent and
LI(X)—contra.ctive. So invoking the result of Landers—Rogge [6], we deduce that there

- v 1 N
exists ¥ asub—o-fieldof ¥ s.t. T = Ez. Hence 2:1 LX), ¥ as claimed by the
theorem.

4) SET VALUED CONDITIONAL EXPECTATION

Here we extend the work of section 3 to set valued random variables.
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In this section (Q, X, 4) is a complete probability space and X a separable Banach
space. Additional hypotheses will be introduced as needed.
We start with an interesting observation concerning set valued conditional
expectations.
THEOREM 4.1: If X* is separable, EO is a sub—o—field of ¥ and
F: Q- Pwkc(x) is
integrably bounded,
then EEOF(w) € Pwkc(x) J—a.e..
PROOF: From the corollary to proposition 3.1 of {10}, we have that for all A e EO,
M(A) = JA F(w) du(w) = {jAf(w) dp(w): feSIl?} € P o(X). Using theorem 2.2 of

Hiai—Umegaki [4], we have:
", MA) = [ o, Flw) du(e)

*
= A - o(x , M(A)) is a signed measure,

= M(-) is a set valued measure.

Apply theorem 3 of Costé 1] to get G: Q - P kc(X) Ey—integrably bounded s.t.
M(A) = J G(w) dp(w)

{w) JrG dp{w)
=j o(x 2°F<w)) du(w)=jA o(x", G(w)) du(w)

= o(x, EZOF(w)) = o(x , G(w))
for all we Q\N(x), s(N(x)) =0
* *
Let {x.} ,, bedensein X andlet N= U N(c), u(N) = 0. Let x eX and
= n>1

* * * *
pick {xk}kZI [4 {xn}n21 8.t Xy -3,x . Thenfor weQ\N, we have:

o, E OF(w))  o(x’, ()]

<Jolx, EEOF(w)) — olxq, EEOF(w)) | + |00y, G() = o(x ', G(w)] <0 a5 k=

So for all w ¢ Q\N, u(N) =0, we have:
oo, B OF(w) = o(x,G()

20
=E "F(v) = G(w) € Pwkc(x) u—a.e..
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Next we will derive a set valued version of theorem 3.2. For this we will need the
following simple lemmata.

LEMMA 4.1: If %, is a sub—o—field of 5, f ¢ LI(X) and v ¢ L5, X)),

then jQ (), v(w)) du(w) = jQ (5 01, v(@) du(e).

PROOF: Let v(w) = x4(w)X with Ae, and X ¢X . Then we have:

| (B %), x5 (0I) die) = | (E %), x") duw)
Q : A A ’
=], B0, ) ) = | xa(@) E (i), <) du(o)

5 . .
= J o B (0, () X anted) = [ (000D, x5 () o

So the lemma is true for countably valued v(-) belonging in the Lebesgue—Bochner
space L°°()30, X*). But from corollary 3, p. 42, of Diestel-Uhl [2], we know that these
functions are dense in L”(EO, X*). So by a simple density argument, we conclude that the
lemma holds for all v ¢ L%(Sy, X ).

Q.ED.
*
LEMMA 4.2: If 5, is a sub—o—field of 5, f ¢ L'(%, X) and v ¢ L°(X),

%o

then jQ (8w, v(w) d(w) = jﬂ (§w), E Pv(w)) du(w).
PROOQF: Asin lemma 4.1, we can check that the result holds for f(-) beinga
simple function. But recall that simple functions are dense in Ll(EO,X). So the lemma
follows by density.
From Diestel-Uhl [2], theorem 1, p. 98, we know that if X* is separable, then
L))" = L%(X") andif feLY(X), v e L%X), then their duality brackets are defined

by <fv> = J (), ¥(w) duo)

) ) .
THEOREM 4.2: If X is separable, &, XL 5 F F: Q4P (X) are
integrably bounded multifunctions s.t. 8117 KM Sll;‘ and U Sll?
n n2l " n

is relatively w—compact in Ll(X),

then SIZn ﬂ—asl‘ as N-w.
E OF_ EYF

PROOF: First let g e SliF. From proposition 3.1 of [10], we know that Sll,
E

is w—compact in LI(X). So SEIIZF = EESII, Thus g = Ezf, fe Sll;.
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Since by hypothesis S%‘, KM | SII;, we can find fll € S%, n>1 s.t. fn Sifin LI(X).
n n

L )
Then theorem 3.2 tells us that E nfn S, Ezf in Ll(X) and for every n21 E nfn €

S 1 Zn Therefore we deduce that:
E Frl

1. . 1
S's cs-limS'¥ (1)
EYF E "F,

Next let g ¢ w—Tim sly . By definition, we can find g ¢ SlEn s.t.
E"F E "kF
n ny
Z w

n
g g in LY(X). Ako g =E X ,f, ‘Spl*n - Since by hypothesis U F, s

w—compact in Ll(X), by passing to a subsequence if necessary, we may assume that
x*
f, - in LY(X). Since S KM sl we get that feS]. Let v(-) e L%(X)
n
£ 3
= [Ll(X)]* and denote by <-,-> the duality brackets for the pair (Ll(X), L®X ).

From lemmata 4.1 and 4.2 we have:

P ) )
n _ n n _ n
<E fn, v>=<E fn, E “v>= <fn, E “v>.

)
By hypothesis we have E "v -, Ezv in LI(X). Also note that for all n>1

) T
IE 2v(w)|| € E BYv(w)| < ||v||°° p—a.e.. So invoking lemma 4.2 of [12], we get:

Z:11
<fn, E “v> - <f, E%v>.

Again through lemmata 4.1 and 4.2 we get:

~

2v> = <E2f, E

-

L

<f, E v> = <E2f, v>.

oy ¥ 1 *
Thus for every v ¢ L(X ) = [L7(X)] , we have:

5 .
<E nfn, V> o <E2f, v>

5 ;
=E " Y E% in LY(X) and feS].
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So g= Ezf ¢ S1: . Therefore we have:
EZF

w-ms's  csls (2)
EF E°F
n
From (1) and (2) above and since we always have s—lim S 1 5. w—lim SIEn ,
E 'F E'F
n n
we conclude that 512n KM sl 45 now
$ "F_ EXF

QE.D.

REMARKS: (a) Ifforall 21, F =F:Q-P_, c(X) and is integrably bounded,
then the hypotheses of theorem 4.2 are automatically satisfied. Similarly if for all n>1
F (w)¢ W(w) p—a.e. with W: Q- Pwkc(X) integrably bounded.

(b) Conditions that guarantee that Sll-,\Il K-M_, Sll? can be found in [11] (theorem

4.4).

Finally by strengthening the hypotheses on Fn( -) and dropping the separability
requirement on X*, we can prove convergence in the A(-,+) metric.

THEOREM 4.3: If lim Zn =% and F,F:Q- Pkc(x) are integrably bounded

multifunctions s.t. Fn —é—» F,

5 .
then A(E "F_, EYF)-0 as nw.
PROOF: Using Ridstrom's embedding theorem [13] (theorem 2), we can embed

Pkc(x) isometrically as a convex cone in a separable Banach space X. Then F n( ), F(+)

- ) :
n>1 can be viewed as X—valued random variables and E "F(-), ESF( -) are
Py c(X)—va.lued, integrably bounded. Then if by j(:) we denote the embedding of Pk c(X)

in X, theorem 3.6 of Hiai—Umegaki [4] and theorem 3.1 of this paper, tell us that

L . ) .
A(E ®F_, E%F) = (€ °F_) ~JETF) | . =0 asnw.
L(X)
Q.E.D.
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