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ABSTRACT. Let E be a compact subset of the complex plane ¢ . We denote by RO(E) the
algebra consisting of the (restrictions to E of) rational functions with poles off
E. Let m denote the 2-dimensional Lebesgue measure. Let RZ(E) be the closure
of R _(E) in L’(E,dn).

In this paper we consider points x € E such that "evaluation at x" extends
from RO(E) to a continuous linear functional on RZ(E). These points are bounded point
evaluations on RZ(E). Hedberg, Fernstrom and Polking used capacity to identify
bounded point evaluations. We use their results to show that the existence of a
bounded point evaluation x € E is equivalent to the existence of a superharmonic
function u(y) that grows sufficiently fast as y approaches x through the complement of
E.
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1. INTRODUCTION

Subharmonic and superharmonic functions have been useful in solving the Dirichlet
problem: Given an open set S € § with compact closure and a real-valued, continuous
function h defined on S, find a function v harmonic in S and continuous on the closure
of S such that

v(x) = h(x) for each x € 3S.

0. Perron showed that for many sets S one can get a solution by taking the
supremum of the family of subharmonic functions on S whose boundary values are not
greater thamn h(x). A point x € 3S is an irregular boundary point for S if and only if
there is a superharmonic function u on a neighborhood D of x such that

u(x) < lim u(y) = + o,
y-=>x

y € (D\S)\ {x}
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We will be particularly interested in those superharmonic functions that are the
Green potentials of measures supported on compact subsets of ¢ . Using these measures
we will define a capacity that 1is equivalent to the Wiener capacity. Hedberg,
Polking, and Fernstrom have shown that this capacity is helpful in identifying bounded
point evaluations. For compact sets EC€ we will relate the existence of a bounded
point evaluation x on RZ(E) to the existence of a superharmonic function in a
neighborhood of x. We will prove that x is a bounded point evaluation on RZ(E) if and

only if there is a superharmonic function u such that u(x) < =, and

u(y) > |y| |rog |||
y € (D\E)\{x}

where D is a neighborhood of x.

2. SUPERHARMONIC FUNCTIONS AND BALAYAGE.

One way to define a superharmonic function u is to say that u is superharmonic if
and only if -u is subharmonic. To be more specific let Sc ¢ be open and let u(x) be a
function defined for x €S.

DEFINITION 2.1. A function u(x) is called superharmonic on S if for x €S

(1) u(x) <+ o, and u(x) £+ =,

(ii) u is lower semi-continuous, and
(111) u(x) > —— 2T u(x + re'®) do vhenever the disk with radius r > 0 and
center at x is contained in S. )

EXAMPLES. If f(z) {is analytic in S and A> O, then -log|f| and -|f| X are

superharmonic in S.

Although superharmonic functions need not be continuous, one can define a new
topology on € in which all superharmonic functions are continuous. The smallest such
topology is called the fine topology. A set EC¢ is thin at x if x is not a fine
limit point of E. The following theorem is part of Brelot's contribution to potential
theory. For the proof see[l, p. 210].

THEOREM 2.1. A set E is thin at a limit point x of E if and only if there is a
superharmonic function u on a neighborhood D of x such that

u(x) < lim u(y) = + =,
y *x
y € (D\E)\ {x}

Later we will construct a montone increasing sequence {ui} of superharmonic

functions on a set S that is open in the ordinary topology. By a lemma in [1, p.68]

sup u, is either harmonic or identically = .

i€l i

There is a way to associate with each non-negative superharmonic function u on S

and each set E C S another superharmonic function that dominates u on E and satisfies
a special property. This function can be defined so that when E is compact it equals

S be the

Green function of S. Let u be a non-negative superharmonic function on S. qfs will

a potential with respect to the Green function of S. We begin by letting G

denote the class of superharmonic functions on S. If u éigs is non-negative and E is
any subset of S, let
¢z= {veQBS: v2>0o0nS, v >uonkE}

Let Ry = inf {v: ve o }.
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The function R; satisfies (i) and (iii) of the definition of superharmonic.
R; may not be lower semi-continuous. By defining
R0 = lim inf R(y)

yx
we get a function that is superharmonic on S. f{g(x) is called the balayage of u

relative to E in S. When E C S is compact, the following fact about flg(x) will be
useful [1, p.135]: ﬁ;‘;(x) is a Green potential, i.e. there is a Borel measure uon S

such that “
Ro(x) = [Gg(x,y)du(y).

3. POTENTIAL THEORETIC CAPACITY.

Let SC € be an open set having a Green function Gs « Let E & € be compact and
let u be the function identically 1 on S. Then by [1, p.138] ﬁé(x) is a superharmonic
function on S that is the potential of a measure with support in 3E.

DEFINITION 3.1. The measure ¥ for which ﬁé(x) = GS“E is called the capacitary
distribution of E.

DEFINITION 3.2. The capacity of E (relative to the set S) is defined to be
C(E) = uE(E) with C(¢) = 0.

The C capacity is equal to the Wiener capacity which we will denote by 02 « For
more information on why C(E) = CZ(E) see [1, Lemma 7.19] and [2, Chap. II]. Also, in
[3, p. 160] it is shown that if E is a continuum with diameter d, there are positive
constants Kl and KZ depending only on the distance from E to 3S, such that

1
K, / (log /)2 < C,(E) <K, / (log 1aye.

There is a 02 capacity series that converges at the points where the complement
of a set EC € is thin. To state this as a theorem we will need still more notation.
Let j < k be positive integers. Define

A(j,k) = [zea: 27k ¢ |z| < 2"3}
and A[3,k] = [ze€ 27 < |z] <279}

Now let An = A[n, n+l]. The next theorem is due to Wiener [2]. It is a statement
about thinness at an arbitrary point xe ¢. . We assume after a possible translation
that x=0. The set E need not be compact.

THEOREM 3.1. (Wiener) Let E ¢ €. Then the complement of E is thin at 0 if and

only if ®
1 nCy(ANE) < =
n=1

Fernstrom and Polking used another 02 series to identify bounded point
evaluations [4]. Let E € € be compact and let RO(E) denote the algebra of rational
functions with poles off E. Let m be 2-dimensional Lebesgue measure. RZ(E) will
denote the closure of Ro(E) in the norm Lz(dm).

DEFINITION 3.3. A point x € E is a bounded point evaluation (BPE) on RZ(E) if
there is a constant C such that

€| < cff (f]zdm}l/z for all f&R (E).
E

The next theorem applies to an arbitrary point x € €. We may assume after a
possible translation that x=0.
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THEOREM 3.2. (Hedberg, Ferstrom, and Polking) The point O € E is a BPE

on RZ(E) if and only if ®  on
I 277 C(A\E) € = .
2
n=1
The existence of a BPE at 0 ¢ E is a local property; hence it is no restriction to

assume that E & {z: 'z| <13} = D. The Green function for D is
GD(O,z) = -log ZIZI for z € D\ {0}.

We will need several lemmas to prove our theorem. These are modified versions of
lemmas which can be found with their proofs in [1, Chap. 10].
LEMMA 3.1. There is a constant b independent of j such that
log2|y-z

<b
s i, 1082]y s _
whenever y € €\{z:27J L I;I <2 j+1} and z € {gz 273 L l¢] <2 j} for each positive

integer j > 3.

PROOF. We will consider two cases.
Case 1. Iyl > 2_j+1, > 3. The absolute value of logZ'y—zI is no greater than
(j-1)log2. The absolute value of log2|y| is no less than (j-2)log2. Thus the
quotient does not exceed (3-1)/-2).
Case 2. Iyl < 2_j_2, j » 3. Then log2|y—z| does not exceed (j+1)log2 in absolute
value. Moreover, 1ogZ|y| is greater in absolute value than (j+1)log2. Thus the
quotient does not exceed 1. Any b > 1 will satisfy the statement of the lemma.

LEMMA 3.2. If S is an open set having a Green function Gs , and U is a nonempty
open set having a compact closure UC S, there is a measure u on U such that

W) = CZ(U)’ and Ggu =1 on U.

PR(_)OF. Let {Uj} be an increasing sequence of open sets with compact closures

Kj = Uj € U such that Uj + U. Each set 1(j has a capacitary distribution which we

denote by My Now CZ(U) = lim CZ(Kj) = lim Y (Kj)' Since Cz(ﬁ) { =, the measures
j-no jre

uj are uniformly bounded. There must be a subsequence of the sequence "j which we

can assume to be the sequence itself and a measure u such that
f_fduj + [ fdu
U U

for every function f continuous on U.

We claim that p has support in . If not, there is a compact set SCU,
SN I = ¢, such that u(S) > 0. To get a contradiction, take a non-negative function
f continuous on Fl equal to 1 on S and equal to 0 on an for j sufficiently large.

is supported in 3U

Then f_ fdp > u (S8) > 0. Since each B
i)

W ,fﬁfduj-Ofor
sufficiently large j. This is contradiction.

If x € U, then erj
with compact support to approximate Gs, we see that Gsuj(x) -»Gsu(x) as j + = By

the definition of a capacitary distribution Gsuj(x) = 1 for sufficiently large j;

for all j sufficiently large. Using continuous functions

hence Gs u(x) = 1. The proof is complete.

DEFINITION 3.4. A set Z c € is a polar set if there is an open set UD Z and a
function u superharmonic on U such that {z: u(z) = +=} > Z.

The next two lemmas will be useful in proving that a certain C2 capacity series

converges.
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LEMMA 3.3. Let v be a measure having support FC D. If GD > aon F except
possibly for a polar subset of F, then WF) > aCZ(P).

For the proof see [1, p. 219].

LEMMA 3.4. If v is a finite measure on D such that v = GDv is finite at 0, there
is a constant a depending only on v, such that

/ 6p(y,2)dx) < a
DVA(3-1, j+2)
for all y € D NA[j, j+1].

PROOF. Since GD(y,z) < -logly-z', we may prove the lemma by proving the
inequality with GD replaced by —1og|y—z|. By Lemma 3.1. there is a constant b,
independent of j > 3, such that

f—logly-zld\)(y) = f[-longy-zI +log2] dwWy)
D\A(j-1, j+2) D\A(j-1, j+2)
< -b [log2|y|dWy) + (1og2) WD)
D\A(3-1, j+2)
< -b I{logZIyld\)(y) + (log2) WD)

for all z€D N A[j, j+l]. Since we have assumed that —f logZIyIdV(Y) is finite, we
D

can take a = -b flog2|y|dV(y) + (log2) WD).
D

4. THE MAIN THEOREM.

Let E C € be compact. The property of being a BPE on Rz(E) is local property and
is invariant under translation. 1In stating our theorem about an arbitrary point x¢E,
we may therefore assume that E C {z: |z| < (1/2)} = D and that x =0. We will combine
Theorem 3.2. with ideas of Wiener and Brelot to prove:

THEOREM 4.1. The point 0 €E is a BPE on RZ(E) if and only if there is a function
u superharmonic in D such that u(0) < », and

u(y) > y| 7 1ogly] |
y € D\E

PROOF. Suppose that 0 EE is a BPE on R%(E).

Then by Theorem 3.2. .
I 27°C,(ANE) < =
n
n=1

Let {en} be a sequence of positive numbers such that
o
J e a.
n
n=1

For each n > 1 let Uu be a nonempty open subset of D containing An E such that
ﬁn C D, and the following conditions hold:
1
) un {c:]e] < 2 } = ¢, and

(ii) Cz(Un) < CZ(An\E) +te .
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-]
Then ) 22¢ U )<=,
2 n
n=2
We will obtain the required function u as the limit of a sequence of superharmonic
functions. Let G denote the Green function for D. By Lemma 3.2. there is a

measure u with support in 3Un such that

un( w“) = CZ(Un)’ and Gun= 1 on Un.
We have
Gu (0) = [ G(0,2)dw (2) = [ -log2|z|dy (2)
A Ci

< (n+1)(log2) w (U )

= (n+1)(10g2)C,(U ).

m
2n+2 -
For m > 1, define u, = 12 P ((a+1)10g2) 1 Gun. By a remark in Section 2

n=2
the uy tend to a function u that is superharmonic in D and satisfies u(0) < «.
Since Gun =1 on UnDAn\ E,

2k+2 (

u>2 (k+1)10g2) L on U ANE C €AE

n>

for each k > 2 . Thus -2 -1
a(y) > || |1og]y (|7 .
D\ E

Now suppose there is a function u superharmonic in D such that
u(0) < e , and

w(y) > |y|*|10g|y|| !
y € D\E

The function u is lower semi-continuous on D; hence we may assume by taking a smaller
D if necessary that u is positive on D. Moreover, the Riesz Decomposition Theorem
implies that u= Gu+ h where y is a measure supported on D, and h is harmonic in D.
Since h is bounded, we may assume that u= Gu. By Theorem 3.2. it suffices to show

that
2n
127°C,(ANE) < =

For n » 2 consider the open sets

22n

—alogz | 2 AnE

Un = {z: u(z) > nlog

and the sets vn = Un n (A“\E). Since V“ > An\E' it suffices to show that

T .2n
127G (V) <=
n=2

Let Kn be a compact subset of Vn such that
Cz(Kn) > Cz(vn) - g .
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Then it is sufficient to prove that

5 L2
I 2%,k ) < =
n
n=2
One way to prove that this series converges is to prove that

0
Z 28n+2 lcz (K
n=1

lon+£) <=
for 2 =0, 1, 2, and 3. We will do this for & = 0; the 3 other cases are similar.

Let K be the compact set defined by K= U K U {0}. Let w=RY . since
nx 40

A
u(0) >RK“(0) =w(0), w(0) < . Now w is the Green potential of a measure v with
support in K[1, p. 135]. We note that WD \UKlm) = 0 because w(0) < » ., For each

n »2
w=[6(.,2)dWz) + [ 6(.,z)dWz)

K UK
4n m*n[m
provided we can show that the sets Klm , n > 2, are disjoint.
Since V, €A
4n~ “4n’
. o—4n-2 -4n+1
KynC Vyn € (20 2 < z| < 2 }
= fa: 279973 27h 5] ¢ 274m)
Suppose that m#n. Then
. o~4m-3 -1 ~4m
K, Clz: 2 <27 z| < 27m)

If m=n+k with k > 0, then
o~4m g~4n-4k < o~4n-3

, and
. o~4n-3 -1 —4n
K, D\ {z: 2 <27 z| <27
If w=n-k with k> 0, then
~-4m-3 _ 2-4n+4k-3 > p~4n

2 , and

R, € D\z: 274773 ¢ 271 |2] < 274m),

4
In either case Kl.mc D\A(4n~-1, 4n+2). The sets Kl.n’ n > 2, are disjoint.
Since UK, c D\A(4n-1, 4n+2), Lemma 3.4. implies there 1s a constant B depending

only on v such that
| G(y,z)dwz) < 8

for all yeD N A, . ml;fam
Thus
w(y) < B+ [ G(y,z)dWz)
K
4n

for all yéD 0 Alm' The functions w and u are equal on K except perhaps for a polar

set ZCK. Thus



458 E. WOLF

w() > |y|™ Jrogly|| ™ .
€ K\Z

Choose an integer N0 such that

28n
m > B for n > N0 .
28n
Then 1{ G(y,2z)dWz) > Zntogz ~P > 0 for all y€K, \Z, and n >N . By
4n
LEMMA 3.3.
28n
v(l([m) > (m— - B)CZ(Klm) for all n > No .
Hence I nawk, ) > § (_zsn_ - BlnC, (K, ).
n>No 4n “’"o 4nlog2 2" "4n

The series anZ(KAn) converges because the hypothesis on u implies that

the

complement of E is thin at 0, and Theorem 3.1. applies. It remains only to show that

the series

) n\)(Klm) converges.

Now o
—flogzlzldv(z) > 7 —logzlzldv(z)
n=2 Klm
L]
> 7 (4n-1)(log2) WK, ).

n=2

Note that
® > w(0) = [6(0,2)dWz) = - [log2|z|dWz).

Thus the series ) (4n-1)10g2W(K, ) converges, and so does the series 3 nwK, ).

This completes tﬁzzptoof. n=1
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