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ABSTRACT. In this paper we will deal with upper and lower bounds for n(x +y) - n(x). In fact,
given q with 0 <q< 1, for sufficiently large integers m,n such that m >n > gm > 2 we show that
n(m + n) — n(m) < In(n)r(n)/In(m + 1). Moreover, explicit bounds are obtained and a wider range is
given under the assumption of the Riemann hypothesis. Let m,n be positive integers with m > 2657.
Let 1<6<2 and m2n2m' If the Riemann  hypothesis  holds, then
n(m + n) - (m) < w/In(m + 1) + Vo® + 0 In(n® + ny4n. (Here n(x) = the number of primes < x.)
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1. INTRODUCTION.

There are several accounts dealing with the validity of the conjecture that forx > 1 and y > 1,
n(x + y) < n(x) + n(y). (1.1)

For example (1], [2], [3] deal with (1.1), whereas in [4] there is a discussion of the conjecture of the
following form:

n(x + y) < n(x) + n(y) + cy/In’(y). (1.2)

(Here we let x2y>1 and c>0.) In fact, one of the two authors of [4] believes that (1.2) is truc,
whereas the other one does not.

What is interesting to this author is a paper writicn by Hensley and Richards [S]; they proved that
if the prime k-tuple conjecture is true then (1.1) is false. Furthermore, assuming that the k-tuple con-
jecture is true they have shown that 3 1 ¢ | > 0 such that for sufficiently large y and infinitely many
x we must have n(x + y) — n(x) — n(y) > cy/In¥(y).

By using sophisticated techniques H.L. Montgomery and R.C. Vaughan [6] proved that if M > 0
and N > 1 are integers then n(M + N) — (M) < 2N/In(N). Now D.R. Heath-Brown and H. Iwanicc (7]
show that if 8 > 11720 and x 2 x(8) then m(x) — n(x — y) > y/(212 In(x)) in the range x® <y <x2. The
methods used in this paper are clementary and give a different range of validity. The proofs of this
paper use the following definitions and results.
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n(x) = the number of primes < x

x

Li(x) = I dvin(t) for x>2
Ls(m) = i Vin(k) for any integer m > 2
k=2
7(x) = Li(x) + O(xe™"™®)  for x22, a>0
n-1
Li(x) = x(1 + Y, (kY/In*(x)))/In(x) + O(W/In™'(x)) for x =2
k=1
n(m) = Ls(m) + O(me=""™) for integer m 22, ¢ >0

| Li(m) — Ls(m) | <C  for some constant C

If the Riemann hypothesis holds, then (1.7) is true

I n(x) - Li(x) | <Vx In(x) / 8t for x > 2657
x(1 + 1/(2 In(x))) / In(x) < m(x) for 59 < x

n(x) < x(1 + 3/(2 In(x))) / In(x) for 1<x

(1.3)

(1.4)

(1.5)

(1.6)

(1.7

(1.8)
(1.9)

Now (1.3), (1.4) can be found in Ayoub [8], whereas (1.5), (1.6) are found in T. Estermann [9].
Furthermore, the paper written by L. Schoenfcld [10] gives us (1.7). Finally (1.8), (1.9) were proven

by J.B. Rosser and L. Schoenfeld [11].

2. THEOREMS, COROLLARIES AND THEIR PROOFS.

THEOREM 1. If 0<d<1 and x)y arc sufficienly large with x2y2dx>2, then

n(x + y) - n(x) — In(y)n(y)¥In(x + y) < O(y/In"*'(y)) for any natural number n > 2.
PROOF. We have from (1.3) and (1.4) the following:

x(x) = x/In(x) + x/In%(x) + -+ - + (=1)1x/In"(x) + O(/In"*!(x)).

Now it is obvious that

R(x+y) — 7(x) = x/In(x+y) — ¥/In(x) + 3‘: [k!x/ln""(x+y) - k!x!ln““(x)]
k=1

+y [1 + "z_!,(kmn*(ny))] [ In(x+y) + O [(x+y)/ln"“(x+y)].
k=1

Given that x > 2, y > 0 then for 0 < k < n-1 we have
k!x / In"!(x+y) < k!x / In**(x).

Hence (2.2) is replaced by
n-1
R(x+y) - 70 <y [1 . }:(k!/ln*(x+y)>] [ incaes) + O [(xayyin®eay) )
k=1
For k > 1, we observe that In¥(x+y) > In*(2y) > In*(y). Replacing In*(x+y), (2.3) now becomes

n(x+y) - (X) <y [1 + nf,(k!/m"(y))] / In(x+y) + O [(x+y)/1n'"'(y)].
k=1

2.1

2.2)

2.3)

Q.4
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Multiplying the first term on the right hand side of (2.4) by In(y)In(y) and using (2.1) we have replaced
(2.4) by the following:
n(x+y) — m(x) — In(y)r(yVIn(x+y) < O [(x+y)/ln““(y)]. 2.5)

It is obvious 3 a constant M > 0 such that for x + y sufficiently large the left hand side of (2.5) is
strictly less than

M(x+y)/In™(y) (2.6)

Since x>y >dx>2for0<d<1 then

M(x+y)/In™(y) < M(y/d + y)/In™'(y) < M(y/In"*\(y)). Q.7
Hence by using (2.7) we conclude that
(x+y) ~ 7(x) = In(y)n(y)/In(x+y) < O(y/In™(y)).
THEOREM 2. Let 0<q<1. If m, n are sufficiently large positive intcgers sausfying
m 2 n 2 qm > 2, then n(m+n) — n(m) < /in(m+1) + Bn(:“J"'—‘i‘i for B,a>0.

PROOF. By using (1.5) we sce that

n(men) - x(m) = 3, (1In(K) + O [(m+n)e-'”"<:*“3]. 2.8)
k=m+1

It is obvious that we can replace (2.8) by
x(m+n) — n(m) — vIn(m+1) < O [(m+n)c" “"""“"]. 2.9

Now 3 a constant M > 0 such that for m + n sufficiently large that the left hand side of (2.9) is striclly
less than

M(m+n)e~* e,
Sincem2n2qgm>2and 0 <q<1 then

M(m + n)e™™™ ¢ M(/q + n)c~*Vin@) _ ppe-e i)
Hence ®(m + n) — ®(m) <n/ In(m + 1) + Bne V@),

COROLLARY 1. Let 0<q<1 If mn are sufficienty large positive integers satisfying
m 2n 2 gm > 2, then n(m + n) — t(m) < In(n)r(n)/In(m + 1).

PROOF. By using the result of Theorem 2 with a slight modification we have
"M + n) — ~(m) < nln@¥(n(n)in(m + 1)) + Bne*'n@, (2.10)
We rearrange the terms in (2.1) so that one can give an upper bound to replace n/In(n). With M >0,
we now incorporate an upper bound of n/In(n) into (2.10) to establish that

n(m+n) — x(m) < In(n) {n(n) - il ((k-1)!n/In¥(n)) + M/In'(n) |/In(m-+1) + Bne ™",
k=2

Hence for n sufficiently large we have
n(m + n) — x(m) < In(n)x(n)/In(m + 1).

THEOREM 3. Let 0<q<1. If mn are sufficiently large positive integers satisfying
m >n>qm > 2, then n(m + n) — ©(m) > win(m + n) - Anc™""®» for a>0 and A >0. constant M we

have

n(m + n) — n(m) > mf (1In(k)) - M(m+n)e " In(m+0) _ Mme*"Intm), .11
ket
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With a slight modification in (2.11) and using another constant M’ > 0 we sce that
n(m + n) - ©(m) > n/In(m + n) - M’(m + n)e"m"‘_"". (2.12)
By rcarranging the terms in (2.12) this will now become

M'(m + n)c“'['m > /In(m+n) + 7t(m) — x(m + n). (2.13)

Sincem2n2qgm>2and 0<q<1 then
M'(m + n)c-q‘lln(m«\) < M'(n/q + n)c—-‘ﬁn(b) = Anc" In(b:).

Hence r(m + n) — n(m) > v/In(m + n) — Anc™*""@),

COROLLARY 2. Let0<q<1,€>0. If mn arc sufficiently large positive intcgers satisfying
m 2n 2 gm > 2, then x(m + n) — 7(m) > In(n)x(n) — (1 + €) win? (n))/In(m + n).

PROOF. By using the results of Theorem 3 with a slight modification we have
#(m + n) — (m) > n In(n)/(In(n)ln(m + n)) — Ane™*""@", 2.149)

Using an argument similar to that found in Corollary 1, we rearrange the terms in (2.1) so that one can
give a lower bound to replace win(n). With D > 0, we now incorporate a lower bound of win(n) into
(2.14) to establish the following

n(m+n)-n(m) > In(n) [u(n)-'f; ((=1)!n/In*(n)) — Dnlln‘(n)] / In(m + n) - Ane~@,
k=2

Hence for sufficiently large n
x(m + n) — (m) > In(n)(n(n) - (1 + €)n/In®(n)y/In(m + n).

THEOREM 4. Let 1<6<2. Let m,n be positive integers with m > 2657 and m 2 n 2 m'®. If
the Riemann hypothesis holds, then n(m + n) — n(m) < /In(m + 1) + Va¥+ n In(n® + ny4n.

PROOF. By using the upper and lower bounds of (1.7) we have
n(m + n) — x(m) < Li(m + n) — Li(m) + (Ym+n In(m + n) + Ym In(m))/8x. (2.15)

Noting that Vm+n In(m + n) > ¥m In(m) and using (1.6), then (2.15) will now become
n(m + n) — 7(m) < miu (1/In)) + Vm + n In(m + n) / 4r. (2.16)
k=m+1

It is obvious that we can replace (2.16) by
7(m + n) — 7(m) < n/ In(m + 1) + Vm + n In(m + ny4n.
Given that m 2 n 2 m"® for 1 < 6 <2 we may now conclude

7(m + n) — n(m) < v/Inm + 1) + Vo® + n In(n® + n)/4n.

COROLLARY 3. Let 1£6<2. Let mn be positive integers with m > 2657, n > 59, and
m2>n2>m" If the Riemann hypothesis holds, then

n(m+n)-n(m) < In(n) [n(n)—n/(Z ln’(n))]/ In(m+1)}+Vn®+nln(n®+n)/4n.
PROOF. By using the result of Theorem 4 with a slight modification we have
n(m + n) — n(m) < nin(n)/(In(m + 1)In(n)) + Vi +n In(n® + n)/4n. 2.17)

By rearranging (1.8) and incorporating it into (2.17) we achieve the following:

n(m + n) - n(m) < In(n) [n(n) - Q@ Inz(n))] /In(m + 1) + Vo® + n In(n® + ny/4n.
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THEOREM 5. Let 1 <6<2. Let m,n be positivc integers with m > 2657 and m 2n2m"®, If
the Riemann hypothesis holds then n(m + n) - =(m) > /In(in + n) — Vo + n In(n® + n)/dn.

PROOF. By using the upper and lower bounds of (1.7) we have
n(m + n) — 7(m) > Li(m + n) — Li(m) - (Vm + n In(m + n) + Vm In(m))/8n. (2.18)

Noting that Vm + n In(m + n) > vm In(m) and using-(1.6), thcn (2.18) will now become
n(m + n) — x(m) > ni“ (1/In(k)) — Vm + n In(m + n)/4n. 2.19)
k=m+1

It is obvious that we can replace (2.19) by

n(m + n) — i(m) > n/In(m + n) — vm + n In(m + n)/4n.

Given that m > n 2 m'® for 1 <0 < 2 we may conclude that

n(m + n) - (m) > n/In(m + n) — N+ n In(n® + n)/4r.

COROLLARY 4. Let 1<6<2 Let mn bc positive integers with m > 2657 and m > n > m'®.
If the Riemann hypothesis holds, then

x(m + n) - 7(m) > In(n)(x(n) — 3n/(2 In*(n)))/In(m + n) — Vo®+n In(n® + n)/4r.

PROOF. By using the result of Theorem 5 with a slight modification we have
7(m + n) — 7(m) > nin(n)/(In(m + n)in(n)) — Vn® + n In(n® + n)/dr. 2.20)
By rearranging (1.9) and incorporating into (2.20) we achieve the following
m(m + n) - 7(m) > In(n)(x(n) — 3n/(2 In¥(n)YIn(m + n) = Vn® + n In(n® + n)dr.

3. FINAL COMMENTS.

I feel that Theorem 1 and the Corollaries 1 and 3 arc relevant to the disagreement between Erdbs
and Richards in their paper [4] dealing about whether the following conjecture is true.

n(x + y) — 7(x) - n(y) < cy / In*(y). 3.1

Of course, Theorem 1 states that (3.1) is true provided that for 0<d < 1, x and y are sufficiently large
and x >y >dx >2. Under similar restrictions, Corollary 1 also states that (3.1) is true. Moreover, if
we assume the conditions that are given in the Corollary 3 then we can give explicit bounds for which
(3.1) is correct.

As for the mysterious person who told P. Erdds [12] that the "correct” conjecture should be
n(x + y) < n(x) + 2n(y/2), I claim to have made somc progress in this direction. From Rosser, Schoen-
feld and Yohe [13] we have mn(2x) — n(x) < ®(x). If m 2n then In(n) n(n)/In(m + 1) < r(n) < 2x(/2).
Hence with the restrictions found in the Corollary 1 we have n(m + n) < =(m) + 2n(n/2).
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