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ABSTRACT. 1In this paper we introduce and study three different notions of generalized
continuity, namely LC-irresoluteness, LC-continuity and sub-LC-continuity. All three
notions are defined by using the concept of a locally closed set. A subset S of a
topological space X is 1locally closed if it is the intersection of an open and a
closed set. We discuss some properties of these functions and show that a function
between topological spaces is continuous if and only if it is sub-LC-continuous and
nearly continuous in the sense of Ptak. Several examples are provided to illustrate

the behavior of these new classes of functions.
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1. INTROUDCTION.

In 1921 Kuratowski and Sierpinski [1] considered the difference of two closed
subsets of an n-dimensional euclidean space. Implicit in their work is the notion of
a locally closed subset of a topological space (X,T). Following Bourbaki [2], we say
that a subset of (X,T) is locally closed in X if it is the intersection of an open
subset of X and a closed subset of X. Stone [3] has used the term FG for a locally

closed subset.

The following results indicate that locally closed subsets are of some interest
in the setting of local compactness, Cech-Stone compactifications, or Cech complete

spaces. From Engelking [4] we have:

1. If (X,T) is Hausdorff and C is a locally compact subspace of X, then C is locally
closed [4, p. 140, Ex. A].

2. If (X,T) is locally compact and Hausdorff and C S X, then C is locally compact if
and only if C is locally closed [4, p. 140, Ex. B].

3. If X is completely regular, then X is locally closed in BX if and only if X is
locally compact [4, follows from Theorem 6, page 137].
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4, If X is completely regular and Cech complete and C is locally closed in X, then
C is Cech complete [4, follows from Theorem 3, page 144].

Stone [3] has studied the absolutely FG spaces - the spaces that in every

embedding are 1locally closed. He has shown that, for Hausdorff spaces, the

hereditarily absolute FG spaces coincide with the hereditarily locally compact spaces.

The results of Borges [5] show that locally closed sets play an important role in
the context of simple extensions. For example, if T(A) denotes the simple extension
of T by A, then if (X,T) is regular and A c X, we have that (X, T(A)) is regular if
and only if A is locally closed in X [5, Theorem 3.2].

In 1922 Blumberg [6] introduced the concept of a real valued function on
euclidean space being densely approached at a point of its domain. This notion was
generalized in 1958 to general topological spaces by Ptak [7] who used the term nearly
continuous. The concepts of nearly continuous and nearly open functions are important
in functional analysis especially in the context of open mapping and closed graph
theorems. We refer the reader to the work of Ptak [7], Pettis [8], Noll [9] and
Wilhelm [10], [11], for example.

In this paper we consider a new class of generalized continuous functions which
are called LC-continuous functions. Such a function is defined by requiring the
inverse image of each open set in the codomain to be locally closed in the domain.
The significance of this notion is that LC-continuity is the continuity dual of nearly
continuity, that is a function is continuous if and only if it is nearly continuous
and LC-continuous. This theorem enables us to obtain interesting variations of
results from functional analysis. We quote two to illustrate. If G is a Baire
topological group and H is a separable (or Hausdorff and Lindelof) topological group,
then a homomorphism f: G * H is continuous if and only if it is sub-LC-continuous,
Husain (13, p. 222]. If X is a Baire topological vector space, Y is a topological
vector space and f: X * Y is linear, then f is continuous if and only if it is sub-LC-

continuous, Husain [13, p. 224].

In section 2 we consider the properties of locally closed subsets, while section
3 1introduces the classes of LC-irresolute, LC-continuous and sub-LC-continuous
functions. Section 4 is concerned with some of the properties of these functions, and
relevant examples are provided in section 5. We note that throughout this paper no

separation properties are assumed unless explicitly stated.

2. LOCALLY CLOSED SETS.

Let S be a subset of a topological space (X,T). We denote the closure of S, the
interior of S, and the boundary of S with respect to T by T cl S, T int S, and T bd S
respectively, usually suppressing the T when there is no possibility of confusion.
The relative topology on S with respect to T is denoted by T/S. We will denote the
set of all reals by R and the set of all positive integers by N. Unless .:herwise
mentioned R carries its usual topology.

DEFINITION [2]. A subset S of a space (X,T) is called locally closed i S = UNF
where U €T »nd F is closed in (X,T).
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We denote the collection of all locally closed subsets of (X,T) by LC(X,T).

REMARKS. (i) A subset S of (X,T) is locally closed if and only if X-S 1is the
union of an open set and a closed set.
(ii) Every open [resp. closed] subset of (X,T) is locally closed. (iii) For any
space (X,T), LC(X,T) is closed under finite intersections. In particular, any
interval in R is locally closed. (iv) The complement of a locally closed subset need
not be locally closed. Hence the finite union of locally closed subsets need not be
locally closed (see e.g. Corollary 2). (v) A subset S of a space (X,T) is said to be
nearly open if Sc int(cl S). Nearly open sets are known also as preopen sets [l4].
Ganster and Reilly [12] have shown that a subset S of (X,T) is open if and only if it
is nearly open and locally closed. In particular, a dense subset is open if and only
if it is locally closed. (wi) Spaces in which every singleton is locally closed are

called TD spaces [15].

The following result is essentially a restatement of I.3.3, Proposition 5, of

[2].
PROPOSITION 1 [2]. For a subset S of a space (X,T) the following are equivalent.

(i) S is locally closed.

(ii) S =UNcl S for some open set U.
(iii)cl S - S is closed.

(iv) SUX - c1 S) is open.

(v) Scint(SU (X - clS8)).

Recall that (X,T) is called submaximal if every dense subset is open. Using (iv)

of Proposition 1 we immediately get
COROLLARY 1. A space (X,T) is submaximal if and only if every subset of (X,T) is

locally closed.

The next result indicates where to look in order to find locally closed sets
besides open sets and closed sets.

PROPOSITION 2. (i) Let (X,T) be a'rl
(X,T). Then S is locally closed. (1i) Let (X,T) be dense-in-itself and S be a

space and let S be a discrete subset of

discrete subset. Then X-S is locally closed if and only if S is closed.

PROOF. Let S be a discrete subset of the Tl space (X,T), i.e. for each x € S
there is an open set U such that Ux(\ s={x}. IfU =lJ{Ux|x €S} then it is easily
verified that S = U Ncl S. This proves (i). In order to prove (ii), observe that in
a dense-in-itself space any discrete subset has empty interior.

COROLLARY 2. If S = {l/nl n € N} then S is locally closed in R whereas R - S is
not.

Note that in Proposition 2 (ii) the assumption that (X,T) is dense-in-itself

cannot be dropped. Consider a space (X,T) whose set D of isolated points is a proper
dense subset. Then clearly D is a nonclosed discrete subset whereas X - D is closed

hence locally closed.

Our next four results exhibit some of the basic properties of locally closed

sets.
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PROPOSITION 3. Let (¥,T) be a space and let Z e LC(X,T). If A € Z and A €LC
(z,T/Z) then A € LC(X,T).

PROPOSITION 4., Let A and B be locally closed subsets of a space (X,T). If A and
B are separated, i.e. if ANcl B=cl ANB = ¢, then AU B € LC(X,T).

PROOF. Suppose there are open sets U and V such that A = UNcl A and B = Vi cl
B. Since A and B are separated we may assume that Un cl B = VN cl A = ¢.
Consequently AU B = (UUV)ncl (AU B) showing that A U B €LC(X,T).

THEOREM 1. Let {Zi‘ i €I} be either an open cover or a locally finite closed
cover of a space (X,T) and let A € X. If AN ZieLC(Zi, T/Zi) for each i €I then
A € LC(X,T).

PROOF. First suppose that {Zil i € I} is an open cover of (X,T). For each i € I,
since AN Z, € LC(Zi,T/Zi) we may assume that A N Z, = Vin cl(AN Zi) where

i i

€ [ . n = n = .
Vi T and Vi_ Zi Now Vi cl A Viﬂ Ziﬂ cl A;Vin cl(A Zi) AN Zi Hence if

V=U{v,[iel}wehaveViecl A=A,

Now suppose that {Zil i € 1} is a locally finite closed cover of (X,T). For each
i €I, since AN Zié LC(Zi, T/Zi) we have AN Zi = vin cl (An Zi) where V{E T. Let x €
A. Since {Zi‘ i €I} is a locally finite closed cover, hence a point-finite and
closure-preserving cover,there is a finite subset IXQ T such that
x €2, if 1€1_and x #U{Zil iel - Ix}. Moreover, there is an open set Ux
containing x such that Ux Eh{Vi| i e Ix} and an (u {Zil iel - Ix}) = ¢.

If U =U{Ux| X €A}l then clearly AcUncl A. Let yeUNcl A. Then vy e Ux for some
x € A. Since y €cl A = U{cl(An Zi)| i €I} we have yecl(AN Zj) for some j € I. Hence
j € Ix and UXQ Vj' Thus y erncl(AﬂZj) = AN Z S A. 1t follows that A = Uf cl A.

PROPOSITION 5. For each i eI, let (Xi’ Ti) be a space and let Sié LC(xi’Ti)'
If S1 = Xi except for finitely many i € I, then Il Si is a locally closed subset of the
product space Il Xi.
In general one cannot expect that the set-theoretic complement of a locally
closed set 1is 1locally closed. The following result characterizes those spaces in
which a locally closed subset has necessarily a locally closed complement. Recall
that a subset S of a space (X,T) is said to be semi-open if S ccl (int S).
THEOREM 2. For a Tl space (X,T) the following are equivalent:
(i) S eLC(X,T) if and only if X-S € LC(X,T).
(1i) LC(X,T) is closed under finite unions.
(1ii)The boundary of each open set is a discrete subset.
(iv) The boundary of each semi-open set is a discrete subset.
(v) Every semi-open set is locally closed.
PROOF. (i)<=>(ii) is obvious.
(ii) ==> (iii): Let U be open and let x € bdU = ¢l UN (X-U). By assumption,
if S =UU{x} then S €LC(X,T). Let S = VNecl S for some open set V. One easily
verifies that VNbd U = {x}.
(iii) ==> (iv): Let S be semi-open in (X,T) and let U = int S. Then bd S& bd U and
hence bd S is a discrete subset.
(iv) ==> (v): Let S be semi-open in (X,T). For each x € SN bd S there is an open
set U such that U N bd § = {x}. 1If U =int SU[U {le x €SN bd S}] itis easily

verified that S - v Necl S.
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(v) ==> (i): We will show that any union of an open set and a closed set is locally
closed. Let A = UUF where U is open and F is closed. We may assume that UNF = ¢.

If S =U U(cl UNF) then S is semi-open and hence S = VNcl S = VNlcl §=VANecl U for
some open set V. If W= VU (X - cl U) then clearly A = WNcl A. Thus AeLC(X,T).

3. LC-CONTINUOUS FUNCTIONS.

In this section we define three distinct notions of LC-continuity and study some
of their immediate consequences.
DEFINITION. A function f: X *> Y between spaces (X,T) and (Y,0) is called
(i) LC~irresolute if f-l(M)e LC(X,T) for each M €LC (Y,0).
(ii) LC-continuous if f-l(V) €LC(X,T) for each V € g,
(ii1)sub-LC-continuous 1if there is a subbase (or, equivalently, a base) B
for (Y,0) such that f-.l(V)E LC(X,T) for each Ve B.

Let us note that these concepts have also obvious local forms. A function
£f:(X,T) *» (Y,0) is called LC-irresolute [resp. LC-continuous] at a point x e X if for
each M€ LC(Y,0) [resp. M €0 ] satisfying f(x) €M there is an open neighbourhood U of
x such that UN ¢l f-l (M)Ef_l (M). f: (X,T) » (¥,0) is said to be sub-LC-continuous at
x € X if there 1is an open subbase B for the neighbourhood filter of f(x) such
that f_l(V)ELC(X,T) whenever V € B. It is easily verified that f:X + Y is LC-
irresolute [resp. LC-continuous, resp. sub-LC-continuous] if and only if it is LC

irresolute [resp. LC-continuous, resp. sub-LC-continuous] at each point of X.

From the previous definition it follows immediately that we have the following
implications: continuous ==> LC-irresolute ==> LC-continuous ==> sub-LC-continuous.
However, none of these implications can be reversed. Example 1 provides a function
which is LC-irresolute but not continuous. In Example 2 we have comstructed an LC-
continuous function which is not LC-irresolute. Example 3 and Example 4 provide

functions which are sub-LC-continuous but fail to be LC-continuous.

Our next two results are immediate consequences of Corollary 1 and Theorem 2
respectively.

PROPOSITION 6. A space (X,T) is submaximal if and only if every function having X
as its domain is LC-continuous.

PROPOSITION 7. Let (X,T) be a space in which bd U is a discrete subset for each
open set U. Then for any space (Y,0) and any LC-continuous function f: X + Y, f is

LC-irresolute.

The importance of LC-continuous functions shows up in their relationship to
nearly continuous functions. Recall that a function f: (X,T) * (Y,0) is said to be
nearly continuous [7] if the inverse image of each open set is nearly open. The
following result is an improvement of the decomposition theorem in [12].

THEOREM 3. A function f: X * Y between spaces (X,T) and (Y,0) is continuous if
and only if f is nearly continuous and sub-LC-continuous.

PROOF. Let f be nearly continuous and sub-LC-continuous. Let B be a base for
(Y,0) such that f—l(V)eLC(X,T) whenever V€B., Now let W€ o and f(x) € W. There is
a V€ B such that f(x) €V S W. Since f—l(V) is nearly open and locally closed it is
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open [12], hence x int fql(w). This proves the continuity of f. The converse is
obvious.
REMARK. Example 1 and Example 5 illustrate that near continuity and LC-continuity

are independent of each other.

4. SOME PROPERTIES OF LC-CONTINUOUS FUNCTIONS.

It is obvious that if we consider the restriction of a function to an arbitrary
subspace then LC-irresoluteness, LC-continuity or sub-LC-continuity are preserved.
Example 3 illustrates that a function can be continuous on the elements of a cover of
the domain but need not be LC-continuous. As an analogue to the case of continuous
functions we have, however, the following result which i1s an immediate conseqence of
Theoren 1.

PROPOSITION 8. Let {21‘ i €I} be either an open or a locally finite closed cover
of the space (X,T). Let f: (X,T) * (Y,0) be such that f Zizz1 + Y is LC-irresolute
[resp. LC-continuous, resp. sub-LC-continuous] for each i €I. Then f is LC-irresolute

[resp. LC-continuous, resp. sub-LC-continuous].

Concerning compositions of functions, the composition of two LC-irresolute
functions is clearly LC-irresolute. It is also easy to verify that whenever the
composition of a continuous function and an LC-continuous function is defined, it is
LC~continuous. In contrast to this we have the following two results.

PROPOSITION 9. The composition of an LC-continuous function and an LC-irresolute
function need not be sub-LC-continuous.

PROOF. Let A = {I/n ‘ neN}. But Corollary 2, A is locally closed in R and R-A
is not. Let f:R * R be as in Example 2, i.e. f(x) = x if x €A and f(x) = 0 if xe R-
A. Then f is LC-continuous. Define g:R * R be setting g(x) = 0 if x < 0 and g(x) =1
if x > 0. Then g is clearly LC-irresolute. If h = gof then h(x) = 0 if x e R-A and
h(x) = 1 1f x€A. Since the only possible preimages of sets under h are ¢, R, A and
R-A, h is not even sub-LC-continuous.

PROPOSITION 10. The composition of a sub-LC-continuous function and a continuous
function need not be sub-LC-continuous.

PROOF. Take a sub-LC-continuous function f:(X,T) »
3). Hence there 1is a set V€ 0 such

(Y,0) which is not LC-

continuous (e.g. the function in Example
that f_l(V) #LC(X,T). Now o* = {¢,V,Y} is a topology on Y and the identity function

id:(Y,0) + (Y, 0*) is continuous. The composition idof, however, fails to be sub-LC~-

continuous.
To every function £: X > Y one can assign the graph function gt X+ XxY
defined by gf(x) = (x,f(x)).
PROPOSITION 11. Let f: X * Y be a function between spaces (X,T) and (Y,0).
(i) 1If f is sub-LC-continuous then g¢ is sub-LC-continuous.

(ii) If f is LC-irresolute then g¢ need not be LC-continuous.

-1
PROOF. Let B be a subbase for (Y,0) such that £ (V)< LC(X,T) whenever V<€ *.

Then {U < V | UE€T,V € B} is a subbase for the product topology
This proves (i). T¢  prove
“ 0.

on te

- -1
Since gfl(U x V) =Uunf “(V), g is sub~-LC-continuous.

(11) let f: R > ® as in Example 1, i.e. f(x) =0 if x < 0 and f(x) =1 x

B = {(0,1)}U{(1/n,1)| n&N} then B is closed inR xR. If V=R xR -8 then
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g;l(V) =R - {l/n' n € N} is not locally closed by Corollary 2, hence g¢ fails to be

LC-continuous.

Proposition 11 shows that the diagonal function of a family of LC-irresolute,
thus LC-continuous, functions will not be LC-continuous in general. Our last result
shows that sub-LC-continuous functions behave much better in this respect. Its proof
is an immediate consequence of Proposition 5 and thus is omitted.

PROPOSITION 12, (1) For each 1 € I let fi: Xi + Yi be sub-LC~-continuous.
If £=1 f.i then f: Il Xi + I Yi is sub-LC-continuous. (ii) For each i € 1
let fi: X »> Yi be sub-LC-continuous. If f = A fi: X+1I Yi’ i.e. (f(x))i = fi(x)
for each 1 € I, then f is sub-LC~continuous.

5. EXAMPLES.

In this section we provide some examples in order to illustrate the various
notions of generalized continuity which were introduced and discussed 1in the previous
sections. We point out that in most cases we consider real-valued functions on the
real line so that very natural spaces are involved in producing our counter examples.

EXAMPLE 1. Define a function f: R * R by setting f(x) = x if x < 0 and f(x) =1
if x > 0. For any subset V & R we have f_l(V) = VN (-=,0) if 1 ¢ V and

f_1 (V) = vU(@Q,») if 1 € V. One easily checks that f is LC-irresolute. Obviously f
is not continuous.

EXAMPLE 2. Let A = {l/nl neN}cR. By Corollary 2, A is locally closed in R and
R-A is not. Define f: R * R by setting f(x) = x if x e A and f(x) = 0 if x € R-A.
Since f_l({o}) = R-A, f fails to be LC-irresolute. If V S R is open and O#V then

£l (V) €A and is locally closed by Proposition 2. If 0 €V then f-l(V) is a cofinite,
hence an open subset of R. This shows that f is LC-continuous.

EXAMPLE 3. Define f: R * R by setting f(x) = x 1f x# 0 and £(0) = 1. For any
subset V € R we have f_l(V) =V - {0} 1f 1¢V and f—l(V) =vU{0} if 1 € V., Hence, if
V is an open interval then f-l(V) is locally closeds Thus f is sub-LC-continuous.
Now let V =R - ({O}U{l/n' n&N, n > 2}). Then V is open and dense. Since l.eV
we have (cl f_l(V)) - f_l(V) = {xER' x# 1/n for each n » 2} which is not closed,
so f_l(V) is not locally closed by Proposition 1. Hence f is not LC-continuous.

EXAMPLE 4. Let Y be the Sorgenfrey line and f: R - Y be the identity function.
Clearly f 1is sub-LC-continuous. If B = {—l/nl n& N} then Y-B is open in Y but not
locally closed in R. Thus f is not LC-continuous.

EXAMPLE 5. There is a bijective, open and nearly continuous function
f: R* Y, Y a metrizable space, such that £ is LC-continuous at no point.

Let D1 be the set of all rationals in R and let D2 =R - Dl' If Y= Dl @ D2 then
the identity function f: R > Y, f(x) = x for each x & R, is the desired function.
This example is due to Berner [16].

EXAMPLE 6. There is a Hausdorff space (X,T) and a bijective LC-irresolute

function f: X+ Y, Y a discrete space, such that f is continuous at no point.

We use the so-called Bourbaki construction. Let X be the set of reals and Te he
the euclidean topology on X. Let a be a maximal filter consisting of dense sibsats of

(X’Te) and lat T "» the topology on X having Te U o as a subbase. It is well k-
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that (X,T) is Hausdorff submaximal and dense-in-itself. If Y is the set of reals
carrying the discrete topology then the identity function f: X + Y is LC-irresolute

since (X,T) is submaximal. However, f is continuous at no point since (X,T) is dense-

in-itself.

ACKNOWLEDGEMENT, The first author wishes to acknowledge the support of an E.
Schrodinger Auslandsstiipendium awarded by Fonds zur Forderung der Wissenschaftlichen
Forschung, Vienna, Austria.

Permanent address of Dr. M. Ganster: Department of Mathematics, Graz University of
Technology, Kopernikusgasse 24, A-8010 Graz, Austria

REFERENCES

1. KURATOWSKI, C. and SIERPINSKI, W. Sur les differences de deux ensembles fermes,
Tohoku Math. J. 20 (1921), 22-25.

2. BOURBAKI, N. General Topology, Part 1, Addison-Wesley, Reading, Mass. 1966.

3. STONE, A.H. Absolutely FG spaces, Proc. Amer. Math. Soc. 80 (1980), 515-520.

4. ENGELKING, R. Outline of General Topology, North Holland Publishing Company-

Amsterdam, 1968.

5. BORGES, C.J.R. On extensions of topologies, Canad. J. Math. 19 (1967), 474-487.

6. BLUMBERG, H. New properties of real functions, Trans. Amer. Math. Soc. 24
(1922), 113-128.

7. PTAK, V. Completeness and open mapping theorem, Bull. Soc. Math. France 86
(1958), 41-74.

8. PETTIS, B.J. Closed graph and open mapping theorems in certain topologically
complete spaces, Bull. London Math. Soc. 6 (1974), 37-41.

9. NOLL, D. Blaire spaces and graph theorems, Proc. Amer. Math. Soc. 96 (1986), 141-151

10. WILHELM, M. Relations among some closed graph and open mapping theorems,
Colloq. Math. 42 (1979), 387-394.

11. WILHELM, M. Some negative examples concerning nearly continuity, Comment. Math.
26 (1986), 187-194.

12. GANSTER, M. and REILLY, I.L. A decomposition of continuity, to appear.

13. HUSAIN, T. Topology and Maps, Plenum Press, New York and London, 1977.
14. MASHHOUR, A.S., ABD EL-MONSEF, M.E. and EL-DEEB, S.N. On precontinuous and weak
precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47-53.

15. AULL, C.E. and THRON, W.J. Separation axioms between TO and Tl’ Indag. Math. 24
(1963), 26-37.

16. BERNER, A.J. Almost continuous functions with closed graphs, Canad. Math. Bull.
25(4) (1982), 428-434,




Mathematical Problems in Engineering

Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years
for one-, two-, and three-dimensional space. Additionally,
such dynamical systems can exhibit a very important and still
unexplained phenomenon, called as the Fermi acceleration
phenomenon. Basically, the phenomenon of Fermi accelera-
tion (FA) is a process in which a classical particle can acquire
unbounded energy from collisions with a heavy moving wall.
This phenomenon was originally proposed by Enrico Fermi
in 1949 as a possible explanation of the origin of the large
energies of the cosmic particles. His original model was
then modified and considered under different approaches
and using many versions. Moreover, applications of FA
have been of a large broad interest in many different fields
of science including plasma physics, astrophysics, atomic
physics, optics, and time-dependent billiard problems and
they are useful for controlling chaos in Engineering and
dynamical systems exhibiting chaos (both conservative and
dissipative chaos).

We intend to publish in this special issue papers reporting
research on time-dependent billiards. The topic includes
both conservative and dissipative dynamics. Papers dis-
cussing dynamical properties, statistical and mathematical
results, stability investigation of the phase space structure,
the phenomenon of Fermi acceleration, conditions for
having suppression of Fermi acceleration, and computational
and numerical methods for exploring these structures and
applications are welcome.

To be acceptable for publication in the special issue of
Mathematical Problems in Engineering, papers must make
significant, original, and correct contributions to one or
more of the topics above mentioned. Mathematical papers
regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

December 1, 2008
March 1, 2009

‘ Manuscript Due

‘ First Round of Reviews

June 1, 2009

‘ Publication Date

Guest Editors

Edson Denis Leonel, Departamento de Estatistica,
Matemadtica Aplicada e Computagdo, Instituto de
Geociéncias e Ciéncias Exatas, Universidade Estadual
Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro,
SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State
University, Vorob’evy Gory, Moscow 119992, Russia;
loskutov@chaos.phys.msu.ru

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1Call for Papers-4pt
	Guest Editors

