Internat. J. Math. & Math. Sci. 321
VOL. 12 NO. 2 (1989) 321-332

A CHARACTERIZATION OF THE GRASSMANN MANIFOLD
Gp,2(IR). ANOTHER REVIEW

A.J. LEDGER

Department of Pure Mathematics
University of Liverpool
Liverpool, L69 3BX
England
B.J. PAPANTONIOU

Department of Mathematics and Physics
University of Thessaloniki
54006 Thessaloniki
Greece

(Received November 9, 1987 and in revised March 16, 1988)
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1. PRELIMINARIES.

Let Gp 2(R) be the oriented real Grassmann manifold of 2-planes in RP+2. The
’
purpose of this paper is to characterise this manifold and its non-compact dual
G* 2(R) by means of a particular tensor field T of type (1,3) and the Weingarten map
’

on geodesic spheres.

The problem was first considered by L. Vanhecke and T.J. Willmore who
characterised spaces of constant curvature and spaces of constant holomorphic
sectional curvature [1]. The case G (R) has considered by the second of the
authors in [2]. These results were generalised by the first author and D.E. Blair in
[3]1, [4]. 1In this respect the conditions we need differ from those of [2] and, as our

proof shows, some of the conditions given there are redundant.

We begin with some general remarks on Jacobi vector fields and geodesic

spheres. Let M be a Riemannian manifold of dimension n>2 and let U be a normal
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neighbourhood of a point meM. We may take U to be a geodesic ball of radius r.

Choose an orthonormal basis for the tangent space Mo and let {xi}, i=l,...,n be the

corresponding normal coordinate system on U. Write N for the unit vector field on
i

U-{m} tangent to geodesics from m, thus N = 5; —— where s denotes geodesic

3xi

distance from m. Let V be the unit tangent field to a geodesic Y:(-r,r)>U, with

Y(0)=m, choose a non-zero vector wm’ai(—éf)n normal to Vm and let Y=ais on U.

x Ix

Then on Y-{m}, we have [Y,N]=0 and R(N,Y)N=VNVYN=V2

NY. Consequently the vector field

X on Y defined by X -r{o<r, satifies

=io'(._i_)
Y@ O 1 ()

V_N= .
XN VNX (1.1)
on Y-{m} and, by continuity,
2
R(v,x)v=vvx on Y. (1.2)

Thus X is a Jacobi vector field on Y for which

X =0 and V_ X=W (1.3)

m v m

m

In particular, X is normal to V and, for any point Q on Y the normal space to
VQ is formed by evalutating all such Jacobi vector fields at Q. Now write A=-VN.
For any geodesic sphere S in U with centre m, the restriction of A to tangent vecotrs
to S is just the Weingarten map with respect to N as unit normal vector field. Also
by (1.1) - (1.2) we have on Y-{m}

2
R(N,X)N ==V AX=A x—(VNA)x (1.4)

This equation is linear in X, hence, from the above remarks, it is valid for arbitrary
vector fields X on U- {m} , where we note from the definition of A that AN=0.

Now suppose M is a Riemannian locally symmetric space. With the previous

notation, suppose Wm satisfies

R(V_,W )V =c.W
m m m m
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Let X be the Jacobi vector field on Y satisfying (1.3) and W the parallel vector
field on Y with initial value Wm. Since VR=0 we have R(V,W)V=cW from which fW is a

Jacobi vector field on Y with the same initial conditions (1.3) as X when we choose
|c‘-stin(|c‘b&0), if c <O
f(o) = ¢ 1/2 sinh(cl/zc), if ¢ >0
g , ifc=0
Thus X=fW and as a consequence of (1.1) and the definition of A

av = -, (1.5)
Since the Riemannian curvature at m is bounded, the set of eigenvalues c of

R(Vm,--)Vm taken over all unit vectors Vm is bounded, say lc' < k2,k > 0. Thus

if we take U to be a geodesic ball of radius < % , then f # 0 on 7y-{m}. We now
have the following immediate consequence of (1.5).
PROPOSITION 1.1. Let m be a point in a Riemannian locally symmetric space of
dimension > 2. Then m has a normal neighbourhood U such that, for each unit vector
VmeMm and corresponding geodesic Y, the parallel translate of an eigenspace of the
linear map R(Vm,-)Vm along Y is contained in an eigenspace of the Weingarten map for

each geodesic sphere in U with centre m.

2. STATEMENT OF MAIN THEOREM.

We consider the Grassmann manifold Gp 2(R) as the homogeneous Riemannian
b
symmetric space SO(p+2)/S0(p)xS0(2). The tangent space at any point mer 2(R) can
’

be identified with the vector space M( of all px2 matrices over IR, considered as

px2)
real vector space with inner product

g(X,Y) = < X,Y > = trXy" (2.1)

which is clearly Hemitian with respect to the almost complex structure J given by

J(xl’XZ) = (-XZ,XI) where XI,X2 are column vectors of the form pxl. An invariant

Kaehler metric g is then defined on Gp 2(R) and the corresponding Riemannian

’
curvature tensor at m is represented by its action on M(pr) by ([3], p. 180)
R(X,Y)Z = XY'z-¥x' z-2(x"¥-v %) 2.2)
Similarly, for the non-compact dual G* the curvature tensor is just the negative

p,2 "’
of this, and it will be sufficient to consider the compact case. Of course the metric

g can be replaced by any metric homothetic to it without affecting R.
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The tensor T of type (1,3) defined at m by
T(X,Y,2) = XYz (2.3)

is invariant by the isotropy group and so extends to a parallel vector field on

Gp 2(R), also denoted by T. We define linear endomorphisms TXY,TXY and Ti at m by
i)

T 2T(X,Y,2), ™Y z-1(2,%,Y), TiZ-T(x,Z,Y) (2.4)
which are self-adjoint. Then one easily verifies that T has the following properties
at m, hence on G_ _(R):

P>2

P, : T(T(X,Y,Z),U,V) = T(X,T(U,Z,Y),V) = T(X,Y,T(Z,U,V))
P, : < T(X,Y,2),W> = < T(Z,W,X),Y > = <T(Y,X,W),Z >
P, : For each unit vector X

f. tr T=2, L. er T§ =1, iii. tr T%%%p, pezt
Moreover it is known that dimG 2(R)=2p. Particular use will be made of unit
’

vectors X at m satisfying T(X,X,X)=X. Such vectors are characterised by the
following:

LEMMA 2.1. Suppose x-(xl,xz) € M(pr)
only if Xl and X2 are linearly dependent.

PROOF. From the equation XXtX=X we easily get "Xl'|2. IIXZ‘IZ (l-coszv) =0,

where VvV 1s the angle between XI’XZ' from which we have v=0 . Conversely suppose

satisfies tr XXT=l1. Then XX'X=X 1f and

-
X =X

Now choose a geodesic Y through m with unit tangent vector field V such that
T(V,V,V)=V on Y. This relation holds if and only if it is satisfied at m, and

A€R therefore (1+A2)||Xll|2-l from which we have XXtX-X.

clearly such vectors exist at m. Then by (2.2) we have:
R(V,JV)V= -JV , (2.5)

so using Proposition 1.1 we have the following result.
PROPOSITION 2.2. Let mecp 2(R) and choose a normal neighbourhood U of m as in
Proposition 1l.1l. and let YcU be any geodesic ray from m with unit tangent vector

Nm satisfying T(Nm,Nm,Nm)st. Then the Weingaren map A has the following property
AIN =£(N ).JN , £(N ) € R (2.6)

We now state our main result.
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THEOREM 2.3. Let M be a complete simply connected Kahler manifold of dimension
2p>2 with nmetric g and almost complex structure J. Let T be a parallel tensor field

of type (1,3) on M satisfying P trough P Suppose for each meM there exists a

1 3°
normal neighbourhood U of m such that for each geodesic sphere S in U centred at m and
for each unit normal Nm to S with T(Nm,Nm,Nm)=Nm the Weingarten map satisfies
(2.6). Then M is homothetic to either the Euclidean space

2p %
E™Y, Gp,Z(R) or Gp,Z(R).

3. A CHARACTERISATION OF T ON M
(px2)

The proof of the Theorem depends largely on a characterisation of the structure

described earlier on the tangent space to Gp 2(R) at any point. For this purpose we
’

require the following result.
PROPOSITION 3.1. Let V be a real finite dimensional vector space with inner

product <, > and let T be a tensor of type (1,3) on V satisfying P, through P

3°
of all real

1

Suppose dimV=2p > 2, then there is a linear isomorphism of V onto M(pxz)

px2 matrices considered as vector space and under identification T(X,Y,Z)=XY Z and
<X, 0=t rXx".

The proof of this proposition requires several lemmas. The first of these lemmas
provides a useful duality between TXY and TXY and is immediate from PI’PZ‘P3'
LEMMA 3.2. Define a tensor S on V by S(X,Y,2)=T(Z,Y,X) and write
YX XY X .Y
Sey=T > ST =Tyys SY-Txix Then P ,P,
P3 is satisfied when T and TXX are replaced by S

p and 2 are interchanged.

are satisfied when T is replaced by S and

XX and Sxx respectively provided

In what follows we remark that P1 and P2 may be used occasionally without

reference.

TXX and Tx

LEMMA 3.3. For each non-zero XeV the linear endomorphisms TXX’ X

are self-adjoint and T(X,X,X) #0.

PROOF. The self-adjoint properties are clear from Pl' Also from P3(i) there

exist Y such that T(X,X,Y)#0. Therefore from Pl and P2 we have:

KLT(X,X,Y), T(X,X,Y) >=<T(X,X,T(X,X,Y)),»=< T(T(X,X,X),X,Y),>

Thus T(X,X,X) #0.
LEMMA 3.4. Suppose X,YeV are non-zero and T(X,X,Y)=A.Y. Then im TYY is

contained in the A-eigenspace of Tkx. If T(X,X,X)=AX then A is the only non-zero

eigenvalue of TXX'
PROOF. We have to prove that for any ZeV, TXX(T(Y,Y,Z))=AT(Y,Y,Z). In fact,

Ty (TCY, Y, 2))=T(X,X, T(Y, Y, 2) ) =T(T(X,X,¥), Y, 2) =AT(Y, Y, 2).
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1
#i = — =
Suppose now that there exist u,Z#0 such that TXXZ uZ then Txx(u Z) Z, so Zeimex

and from the first part of the lemma Zel-eigenspace of TXX' Therefore

Txe=AZ, 80 AZ=uZ and then u=A.
From now on we use the following notation: Define D € V by XeD if and only if

= H #0}. - = .
X=0 or rkax==min{rkTYY YeV and Y#0}. Then for each non-zero XeD write YX imex

XX _YY

Dually we define D'c V by replacing TXX’TYY above by T ~,T  and writing
X

Vxﬂim Txx for X#0. Finally, we write Vx= fo\v .

LEMMA 3.5. Let X and Y be non-zero vectors such that XeD and YeVX Then (1)

=! = 2 2 =
VeCDs (1) V=V, (111) T(X,X,X)=k||X||2X, where k|[X[|2rkT, =2 and
k=max{v/T(2,2,Z)= vz, l‘z"-l} , conversely, any vector U satisfying this equation
belongs to D. (iv) Txx(Vx) =0, where V_ is the orthogonal complement of Vx in V.

PROOF. We may assume that ||X|| = I'Y" = 1. As a consequence of Lemmas 3.3 and
3.4, Txx has exactly one nonzero eigenvalue, say A possibly with multiplicity > 1.
Since T(X,X,¥)= AY then from the definiton of X and Lemma 3.4

imT,,, € A-eigenspace of TXX’ therefore tkTYY-dim im TYY < dim(A-eigenspace of Txx)=rkax;

YY
but rkT _ is a minimum, thus rkTyy’rkax’ so YeD and TY

XX Y
eigenvalue Vv and 1mex=imtyy, which proves (i) and (ii). From the last equation we
have rkax=rkTYY-t, suppose TXX has the A eigenvalue and TYY the veigenvalue,
then trxx' summation of eigenvalues =r.A=r.v, so V=A and therefore T(Y,Y,Y)= Vv .Y.
Next, let Xl be the orthogonal projection of X onto the

= =X+
A-eigenspace of TXX the TXXXI XXI. Let X=X X2 such that Xl belongs to the

has a unique non-zero

1
A-eigenspace and X2 to the O-eigenspace. Then TkXX’TXXx1+TXXx2=AX1' Therefore

X)#0 because if X;=0 then TknyO which is impossible because we proved that
# 0.
TXXX 0 Furthermore,

3 2y = 22 - = =
AR [12%)= A2TR] LK LKD) = TOR AKX D =TCIX,X) T X,X) X))
= T(X,X,T(X,T(X,X,X),Xl)) = T(X,X,T(X,X,T(X,X,X)))=

= Azr(x,x,xl) = A3x]

Thus ’IXIII =1 so X=X, and T(X,X,X) = AX. Since rkax-Z and is a minimum the first

1

part of (iii) follows. Conversely, if T(U,U,U) =k|‘U||2U then rkTUU=rkax so UeD as

required. Finally (iv) is immediate since Txx is self-adjoint and Vx is the k-

eigenspace of Txx.

LEMMA 3.6. If YeV, and U,WeV then T(Y,U,WeV,
PROOF. There exist ZeV such that T(X,X,Z)=Y. Hence from

Py» TCY,U,W=T(T(X,X,2),0,W)=T(X,X,T(Z,0,W))eV, .

In the rest of this section let U be a unit vector in D. Then for any
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X,Y € Vg, T(X,X,Y)sT(Y,X,X)=k||X"2. Y and linearisation gives, in paticular,
T(X,Y,X)+T(Y,X,X)=2k<X,Y>X. These equations imply.
LEMMA 3.7. For all X,YeVy,Ty¥=2k<X,Y>X-k||X|[2Y.  On the other hand we have

1
the following result for (VU) .
v Y UL
LEMMA 3.8. 1f XeV and Ye(V)' then T§Y=0.

PROOF. Since T§ is self adjoint it is sufficient to prove (T))E)2 Y=0. Let

ZeV, then (Ty) 2Z=TW(TXZ)=TR(T(X,2,%))= T(X,T(X,2,%), X) =T(X,X, T(Z X, 0)=T T z=1""

X5 U
TXXZ’ so (TX) Zev

v Hence < (T:)ZY, z2>=<K1Y, (Ti)zz > = 0 which proves the

Lemma.

LEMMA 3.9. (i) For any non-zero vector xavg, V)):-VU Xk

y U-TX(VX) (1i) k=1, (iii) if
YeD is non zero then dim V_=1.
Y U U X, X
PROOF. From Lemma 3.5 (ii) and its dual V§=VU and VU=TX(VX) from Lemma 3.7,

this proves (i). From Lemmas 3.7 and 3.8 the non-zero eigenvalues of Tg are k and -k
with mutiplicity 1 and d-1, where d=dimvg. Therefore k-k(d-1)=1 or k(2-d)=1 and due
to the fact that k > 0 and d is an integer we conclude that d=1, therefore k=1 and

dimVU=l. This proves (ii) and (iii) follows since the choice of unit vector UeD is

U
arbitrary.
LEMMA 3.10. Suppose X,Y are unit vectors in VU with Y orthogonal to V;. Then
Y X Y
(1) <V, Vy > =0, (11) T(Vk, Vi, V) = 0

PROOF. Let Vevi and WCvz. Then from Lemma 3.6 and its dual <T(X,V,X),T(Y,W,Y) >
= < T(W,Y,T(X,V,X)),Y > = < T(W,T(V,X,Y),X),Y > = 0 and (i) follows using Lemma 3.9
(i). Next for Yev, <T(X,Y,V),T(X,Y,V) > = < T(Y,X,T(X,Y,),Vv > = <
T(T(Y,X,X),Y,V),V > Now T(X,X,Y)=Y so from Lemma 3.8 T(Y,X,X)=T(T(X,X,Y),X,X)=
(Ti(()2 Y=0. Hence T(X,Y,V)=0 and (ii) follows using (i).
LEMMA 3.11. Vg admits a multiplication, with respect to which, it is isomprophic
to R.
PROOF. Define a bilinear operation on Vg by X.Y=T(X,U,Y). We show that
Vg becomes a real associative division algebra and the lemma follows using Frobenius
Theorem. Clearly U is a unit vector because k=1. Also multiplication is associative
since (X.Y).2z=T(T(X,U,Y),U,2)=T(X,U,T(Y,U,2))=X.(Y.Z). Moreover any non-zero X has an
inverse ||X||-2X and the proof is complete.
PROOF OF PROPOSITION 3.1. From Lemmas 3.9 and 3.10 together with their duals
VU(resp. VU) is an orthogonal direct sum of subspaces of the form Vﬁ, XeVU
(resp. XGVU) each of dimension w=1. Since k=1, we obtain using Leama 3.5 and its
dual dim V =rkTUU=2 and dim VU=rkTUU=p, p€Z+. For convenience of notation, write

U

U= e= e From Lemma 3.11 we may consider vg as a l-dimensional vector space over R
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with vectors f, feR. Next we may choose sets of orthogonal unit vectors

e 1 2 e .1 1
s e = Ld = ....
{ell,elz}c v, and {ell’ ’epl} cV® such that V=V V) and V"=V, . Vp where

a_%la 1_ %il
V1=V ,V1=Ve for a=1,2; i=l,...,p and the direct sums are orthogonal. Now define
la il

e, =T(e, ,e,e ) for i=1,...,p; a=1,2 noting consistency when i=1 or oa=l. Then
ia il la

®la ®ia a a
eiaeve nv C D and we write Ve = Vi. From Lemma 3.9 (iii) each V, has

il ia i

dimension w=l. Also we note from Lemma 3.1 (ii) and its dual form that for o#B and
i#j

T(e 1) = T(v}, e = {0}

1’1871 11° &1’

and it follows easily that V: and V? are orthogonal if a#B or 1i#j. Since dimV=2p,
V is the orthogonal direct sum of the subspaces V:, i=l,...,p; @=1,2. Next for any

).  Then for f,g, heR,

feR we define eiafsT(eil, ef, e

la

T(e h)=T(T(eil,ef,e h)=T (e (e ,ef),

1af 22 48881y 1) *€ 1882% Ky 11°T(84g8% 1o

eth)-T(eil,T(T(ejl,eg,elB),ela,ef),eth)=T(eil.T(ejl,eg,

T(els,ela,ef)),eth)=6“BT(eil,T(ejl,eg,ef),eth)-GaBT(eil,ef,
=8 =

T(eg,ejl,ekyh)) aBT(eil’ef’T(eg’ejl’T(ekl’eh’elY)))

=6aBT(eil,ef,T(T(eg,ejl,ekl),eh,ely))-ﬁasdjkT(eil,ef,T(eg,eh,e ))=

1y

=5 §.  T(e

a8’ 5 il,T(eh,eg,ef),e”). Now,

ehgf=T(T(eh,e,eg),e,ef)=T(eh,T(e,eg,e),ef)=T(eh,eg,ef)
hence

T(eiaf,e h)-T(eil,ehgf,e ) =fghd

188°%Ky 177%a8% x a1y 6.

Since each v:=T(eil’V:’ela)=elaR it follows that V can be considered as a vector
space over R with basis {eia}’ i=1,...,pj;a=1,2. Then by considering M(pr) as a

vector space over R we have an R-linear isomorphism:

oz V M(pr); 1§aeiaxia > (xia)
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From (3.1)

(e 0¥ 1028 58718 1y Pky) F1aY ja? iy Sy

Thus, if elements of V are represented by their corresponding matrices then T(X,Y,Z)

coresponds to XYtZ. Finally, using Lenma 3.l1,

< eiaxia’ejijB >=¢ T(eil’exia’elm)’ejijB >=¢ T(ela’ejﬂxjs’eil)'

eX, >=< ex o SX > = x, .x otr th, and the proof is complete.

i i ia fa™ " i

REMARK 3.12. Proposition 3.1 has a dual form obtained essentially by exchanging
p,2 and replacing T by S as defined in Lemma 3.2. Thus write each basic vector

e, as € and write any XeV as Then an R-linear isomorphism

ia ai €at¥ai®

YV + M is defined by € (xai); clearly y=to ¢ where t:M

(2xp) ai¥ai * (Z;p)M(pr) is

the transpose. If elements of V are represented by their corresponding matrices in

t t
M(pr) then S(X,Y,Z)=T(Z,Y,X) corresponds to XY Z and < eaixai’eijﬁj > tr XX .

4. PROOF OF THE MAIN THEOREM.

Before proving the Theorem we require some further lemmas. In what follows we
denote  D={XeV/T(X,X,X)=||X||? X} and write as e
row 1 column o and zeros elsewhere.

LEMMA 4.1. Let XeV be non-zero. Then (i) XeD if and only if ¢(X) has rank
one. (ii) '|X||=l and X,YeD then X+YeD if and only if YEVXPVX.
PROOF. (i) Elementary considerations show that if AEM(pr)
AAtA-(tr AAt) A, if and only if A has rank one. Analogously we conclude (ii).

ia the matrix in M(pr) with 1 in

is non-zero then

LEMMA 4.2. Let R be a tensor of type (1,3) on V with the symmetry properties of a
Riemanian curvature tensor and satisfying <R(JX,JY)Z,W >=<R(X,Y)Z,W> on V. Suppose
for each XeD and YeV orthogonal to X, <R(X,JX)X,JY>=0. Then the sectional curvature
determined by R is constant on D.

PROOF. Write K(X) for the holomorphic sectional curvature for any unit vector

XeV. Also write R(X,Y,Z,W)=<R(Z,W)Y,X>. Now choose a unit vector XeD. Let Yevx be
a unit vector orthogonal to X. Then X+Y, X-YeD, so by hypothesis <R(X+Y,J(X+Y)))
(X+Y), J(X-Y)> = 0 and it follows easy that K(X)=K(Y). If XeD then dim Vx=2 and
there exist only one sectional curvature for {X,JX} and the case is trivial. if

XeD then dim Vx=p. We prove that in this case we also have K(X)=K(Y) for all Y. Let
Y be perpedicular to X and Y belongs to Vx. If p=2 then the case is obvious and we
have K(X)=K(Y), if p > 2 then given X and any ZeVX we have for any U perpedicular to
X and Z,K(U)=K(Z) and K(U)=K(X), therefore K(X)=K(Z)=K(U). Thus K is constant on D,

as required.
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LEMMA 4.3. Define R as in Lemma 4.2 and suppose R(X,JX)X=0 and R(X,Y)T=0 for all
X, YeD. Then R=0 on V.

PROOF. We first show for any UeD, R(VU,VU)VU=0. This depends only on the first
of the above two conditions on R. Thus, by linearising the equation R(X,JX)X=0 we
obtain, for all

X, eV  R(X+Y, JX+JY) (X+Y)=0.

Therefore
R(X,JX)Y+2R(X,JY)X = 0 (4.1)

Then (4.1) together with the Bianchi's identity applied to R(X,JX)Y, gives R(X,Y)X =
0. On replacing X, in this last equation, by X+Z it follows tht R(X,Y)Z=0 for all
X,Y, ZEVU as required. Clearly the same property holds with VU replacing VU. The
second condition on R implies that, for any unit UeD and X,YeV
R(X,Y)U=R(X,Y)(T(U,U,U))=T(R(X,Y)U,U,U)+T(U,R(X,Y)U,U)+T(U,U,R(X,Y)U) .

Then from Lemma 3.6 and its dual together with Lemma 3.8 we obtain R(X,Y) € VU+VU.
Next choosee the Dbasis {eia}’ i=l,...,p; a=1,2 for V. We denote the subspace
\' (resp. V 10‘) as Vi(resp. Va). We must show that R acting on basis vectors is
zer%? Since the above properties of R still apply when U is replaced by any basis

vector, we know that for i=l,...,p; a=1,2 and X,YeV,

R(V, ,V, )vi=R(v°‘,v“)v°‘ = 0, and (4.2)
R(X,¥)e, eV +V" (4.3)
We now prove that each R(Vi,V)Vi-O. Clearly, eja+ejBe Veia+ " so by (4.2) and (4.3)
0=R(egte ge8 jqte 390 (2 yqte1g)RMe oo yode gtRLe oo ggdey
But (4.3) implies that R(eia’eja)eiﬁevs and R(eis’ejB)eiueva' It follows that
R(eia’eja)e18=o’ i,j=1,...p; @,B=1,2 (4.4)

Also if i#j and a#Y then (4.3) implies that for all X,YeV

<R(eiu’er)X'Y > =X R(Y,X)er,eiq > =0
Thus for i#j and a#Y
R(eia,er) =0 (4.5)

Then as a consequence of (4.4) and (4.5) each R(Vi,V)Vi=O. Since equations (4.2)

and (4.3) are symmetric in Vi and V¢ the same proof applies to give

R(VQ,V)Va=0 for a=1,2. The Bianchi identity then shows that
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R(Vi,Vi)V=R(Va,Vq)V=0, and these two equations together with (4.5) prove that R=0 on
V as required.

PROOF OF THEOREM 2.3. Under the conditions of the Theorem, suppose the unit
vector VmeMIn satisfies T(Vm,Vm,Vm)=Vm and let V be the unit tangent vector field to
the geodesic Y from m with initial tangent vector Vm. Then T(V,V,V) = V along Y and
from equation (2.5) AJV=f(V)JV for some smooth function f on Y-{m}. It follows
using equation (1.4) that if Y is a parallel vector field along Y normal to V then
<R(V,JV)V,J¥»=0 on Y-{m} and hence at m by continuity. Now consider Mm as the
vector space V in Proposition 3.l. The tensor T at m satisfies Pl,PZ,P3 and, with
the notation of Lemma 4.2 for each XeD and Y orthogonal to X, <R(X,JX)X, JY >
=0. Hence from Lemma 4.2, K is a constant, say c¢ on D, and for all unit vectors

XeD, R(X,JX)X = -cJX. Next, it is clear from Proposition 3.1 and equation (2.2)
that a second curvature R, is defined on Mm by

1

Rl(ny)Z = T(X,Y,Z) + T(Z ,ny)-T(Y’X)Z)_T(Z,X)Y) (4.6)

and Rl also satisfies the conditions of Lemma 4.2 with respect to the given almost
complex structure J on M restricted to Mm. Moreover Rl(X,JX)X = -JX for any unit
vector XeD. The tensor R2=R-ch then satisfies the conditions of Lemma 4.2 and
Lemma 4.3 note that R(X,Y)T=0 since T is a parallel tensor field on M and RI(X,Y)T=0

is the corresponding algebraic property of any point of Gp 2(R). Thus by Lemma 4.3.
’
R=ch (4.7)

on Mm. But m is arbitrary so, defining R, on M by (4.6) we see that on M

1

R-le (4.8)
for some function f, the Ricci tensor corresponding to Rl is a multiple of the metric
g, as can be seen either by direct computation ([6]) or by noting that Gp 2(]R) is an
Eistein space. Hence from (4.8), (M,g) is an Eistein space and f=c on M. Then

VRI-O implies VR=0 so (M,g) is locally symmetric space.

Suppose c=0, then (M,g) is flat. Conversely on any flat Kahler manifold M we can
define T by

T(X,Y, Z)=g(X,Y) Z+g(X,JY) Z. (4.9)

With M complete and simply connected as in the theorem, M is isometric to Euclidean
space Ezp. Next, suppose c > O and define g' and T' on (M,g) by g'=cg and T' =
c.T. Then the conditions of the theorem are satisfied with g',T' replacing g,T;
further, since the curvature tensor R 1is unchanged by the homothety, we have from
(4.6) and (4.7)
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R(X,Y)Zz=T' (X,Y,Z)+T'(2,Y,X)-T'(Y,X,Z)-T'(Z,X,Y) (4.10)

on (M,g'). We know that (M,g') is a locally symmetric space and it is clear from
Proposition 3.1 and equations (2.1), (2.2) and (4.10) that the tangent spaces at any
two points of Gp,Z(R) and M are related by a linear isomorphism which preserves inner
products and the curvature tensors. Hence Gp (R) and M are locally isometric ([5],
p. 265) and this extends to a global isometry when M is complete and simply connected
since Gp (R) has these properties. Finally if ¢ < O we clearly obtain the same

result for the non compact dual of Gp 2(R) and the proof is complete.
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