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ABSTRACT. For a finite group G and an arbitrary prime p, let S (G) denote the
P

intersection of all maximal subgroups M of G such that [G:M] is both composite

and not divisible by p; if no such M exists we set S (G) G. Some properties of
P

G are considered involving S (G). In particular, we obtain a characterization of
P

G when each M in the definition of S (G) is nilpotent.
P
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I. INTRODUCTION.

It is an interesting problem to investigate the relationships between the

structure of a finite group G and the properties of the maximal subgroups of G.

This has been studied by several people (e.g. [4], [5]). In [2] and [7-8] we

have considered the family of maximal subgroups whose indices are composite and

co-prime to a given prime. In this note we obtain further results in this

direction. All groups considered are finite. A maximal subgroup M of a group G

will be sometimes denoted by M <- G. A maximal subgroup M of G of composite index

will be called c-maximal.

2. THE SUBGROUP S (G).
P

Let G be a group and p any prime. Consider the family of subgroups of G:

J {M M is c-maximal, [G M| |}
P

Define S (G) n {M M e J}, if J is empty then set S (G) G. This
P P

subgroup was introduced by us and several results have been obtained in [2] and

[7]. We remark that S (G) is a characteristic subgroup containing the Frattini
P

subgroup (G).

Our first result is motivated by Rose [9] where it was proved that if every

non-normal, maximal subgroup of a group is nilpotent then the group is solvable.

This result was extended by us ([2, Theorem |.I]). We now obtain a further result

in this direction.
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THEOREM 2.1. Let p be the largest prime divisor of the order of a group G.

Suppose that each subgroup in the family J (see above for the definition) is

nilpotent. Then

(i) either, G is p-nilpotent or, there exists a normal p-subgroup P0 of G such

that G/P
0

is p-nilpotent.

(ii) if I (G) denotes the p-length of G then (G) < 2.
P P

(Note: It follows directly from [2, Theorem I.|] that G is solvable in this

case).

PROOF: (i) we distinguish two cases:

Case |: G has no normal p-subgroup. Let P be a Sylow p-subgroup of G. Then

NG(P) # G and choose M <. G such that NG(P) M. If [G M| is a prime q, say,

then it is easy to see that q > p, an impossibility, thus [G M| is composite

and clearly [G M| |. So M J implying that M is nilpotent. Therefore M
P

NG(P). Let PO be a nontrivial characteristic subgroup of P. As G has no normal

p-subgroup, NG(P0) NG(P) M. Consequently M induces only p-automorphism on PO
and so by Thompson [|0] G is p-nilpotent.

Case 2: G has a normal p-subgroup. Let P0 be a normal p-subgroup of G of the

largest possible order. If P0 is a Sylow p-subgroup of G then trivially G/P
0

is

p-nilpotent. So, assume that P0 is not a Sylow p-subgroup. We use induction on

IGI. We note that p is the largest prime dividing IG/P01. It is easy to see

that G/P
0

satisfies the hypothesis of the theorem and G/P
0

has no normal

p-subgroup. So by induction hypothesis G/P
0

is p-nilpotent. Thus the proof of

(i) is complete and (ii) follows now readily.

Our next result illustrates how under certain conditions the supersolvability

of a group is controlled by the structure of certain groups of smaller orders.

THEOREM 2.2. For a group G and any prime p, if IS (G) is co-prime to p, then
P

G is supersolvable <=> G/S (G) is supersolvable.
P

PROOF: The case => is trivial and we consider now the <= case.

If every maximal subgroup of G is of prime index then G is supersolvable by a

well known result of Huppert and so S (G) is supersolvable. Now let M be a
P

c-maximal subgroup of G. If M does not contain S (G),then G MS (G) and so
P P

[G:M] since by hypothesis IS (G) is a p’-number. Consequently M E J and so
P P

S (G) < M, a contradiction. Thus S (G) is contained in every c-maximal subgroup
p p

of G and so S (G) is contained in L(G), the intersection of all c-maximal
P

subgroups of G. Now by [|] (see [2] for a published proof) L(G) is supersolvable

and so the result now follows.

A group G is called a Sylow tower group of supersolvable type if (i) p| > P2
> Pk are all the prime divisors of IGI and P’I is a Sylow Pi-subgroup of G and

(ii) e P2 Pk < G, i k.

THEOREM 2.3. Let q be the largest prime divisor of a group G and assume that

S (G) G. (In other words, the family J in the definition of S (G) is empty).
q q

Then G is a Sylow tower group of supersolvable type.

PROOF. We use induction on IGI. If Q is a Sylow q-subgroup of S (G) then by
q

[7, Proposition 5] Q < G. Consider the following two families of subgroups:
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J {M M is c-maximal in G, [G M] I}
q

J {M/Q: M/Q is c-maximal in G/Q, [G/Q M/Q] I}
q

Since S (G) G, J is empty. This implies that J1 is also empty. For, if J1 is
q

nonempty and M/Q belongs to J1 then clearly M e J, contradicting the fact that J

is empty. Hence S (G/Q) G/Q. This implies that if M/Q is an arbitrary maximal
q

subgroup of G/Q then clearly [G/Q M/Q] and [G/Q M/Q] must be a prime.
q

Thus every maximal subgroup of G/Q is of prime index. So, by a well known result

of Huppert G/Q is supersolvable. Hence G is a Sylow tower group of supersolvable

type.

If G is supersolvable then every maximal subgroup of G is of prime index by

a well known result of Huppert, and so S (G) G. Thus, if G is supersolvable
P

then for H < G, we have that S (G) n H S (H). A simple example will show that
p P

the converse is not always true. (Take G A
4

and p 2. Here S2(H) H for

every subgroup H but A
4

is not supersolvable). However, we have the following

partial converse:

PROPOSITION 2.4. Let p be the largest prime dividing the order of a group G.

Suppose that S (G) n H S (H) for every subgroup H of G. Then G is a Sylow
P P

tDwer group of supersolvable type.

PROOF: Let Q be any Sylow q-subgroup of G where q is any prime dividing

By hypothesis, S (G) n Q Sp(Q). Further since any maximal subgroup of Q is of
p

prime index in Q, S (Q) Q irrespective of the fact that p may or may not be
P

equal to q. Thus S (G) contains every Sylow q-subgroup of G for every prime q
P

dividing IGI. Therefore S (G) G. The result now follows by applying Theorem
P

2.3.

We omit the proof of the following standard result:

LEMMA 2.5. Let G be a supersolvable group in which for every maximal subgroup

M, [G:M] p where p is a fixed prime. Then G is a p-group.

We now prove:

PROPOSITION 2.6. Let p be the largest prime dividing the order of a group G.

(i) Assume that [G:M] implies that [G:M] is a prime for any M <" G. Then G
P

is a Sylow-tower group of supersolvable type. Further if P is a Sylow p-subgroup

of G then P < G and G/P is supersolvable.

(ii) Let q be any prime such that q is not equal to p. Assume that [G:M]
P

implies thatimplies that [G:M]=q for any M < G and furthermore [G:MI] q
[G:M p for any M| <- G. Then G issupersolvable.

PROOF: We omit the proof of (i) which is a direct consequence of Theorem 2.3.

Now consider (ii). If P is a Sylow p-subgroup of G then by (i), P < G and G/P is

supersolvable. Now q divides IG/P I. Suppose if possible M/P <" G/P such that

[G/P:M/P] |. Then [G:M] and so by hypothesis [G:M] p which is
q q

impossible since M contains P. Thus no maximal subgroup of G/P has index

co-prime to q and since G/P is supersolvable, this gives, by using a well known

result of Huppert, that every maximal subgroup of G/P is of prime index, and so

has index q. By Lemma 2.5 it now follows that G/P is a q-group and so IGI is of
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the form p q By using a well-known result of Burnside, G is solvable. We now

show that G is supersolvable. Suppose if possible that there exists a maximal

subgroup M such that [G:M] is divisible by both p and q. Then G P M and it

follows that [G:M] IPI/IPnMI is a power of p, a contradiction. Therefore, for

any M <- G, we have that the index of M in G is either co-prime to p, or co-prime

to q. Consequently, by the hypothesis it follows that every maximal subgroup of

G is of prime index and hence G is supersolvable by using a well-known result of

Huppert.

REMARK: Under the hypothesis of Theorem 2.6 (ii) it might be tempting to

conjecture that G is nilpotent. However S
3

satisfies the hypothesis but is not

nilpotent.
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