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ABSTRACT. The paper discusses the asymptotic behavior of generalizations of the Gauss’s
arithmetic-geometric mean, associated with the names Meissel (1875) and Borchardt (1876).
The "hapless computer experiment" in the title refers to the fact that the author at an earlier

stage thought that one had genuine asymptotic formulae but it is now shown that in general
"fluctuations" are present. However, no very conclusive results are obtained so the paper ends
in a conjecture concerning the special rSle of the algorithms of Gauss and Borchardt. The
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0. INTRODUCTION.
I have now worked on algorithms of the type of Gauss’s arithmetic-geometric mean (agM.)

for a period of nearly 4 years (starting around the turn of the year 83]84). Strangely enough
some of the impetus for getting interested in this field came from the theory of (abtract)
interpolation. This connection is described in my talk to the Varna conference in May/June
1984 [P1]. The same year I also prepared an over all survey of "means and their iterations" for
the XIXth Nordic Mathematical Congress in Reykjav [ACJP] (with J. Arazy, T. Claesson
and S. Janson as coauthors). I took up the same subject the year after for my address to the
A.Haar Memorial Conference in Budapest [P2], which is a collection of "unsolved problems",
some of them pertaining to the agM. In particular, suggested there a certain approximation
for a 2-dimensional algorithm derived from the "agM." corresponding to the cyclic group C3
with three elements analogous to an asymptotic formula in a note by E. Meissel [M] and also
the classical asymptotic formula due to Gauss [G]. However, numerical evidence produced later
by P. Borwein [Borw] indicates that it here can’t be question of a true asymptotic formula.
think now that fell in the trap of relying too much on information derived from unsufficient
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numerical data. Hence the second link of the title. (I believe now that the claim in [P1]
concerning the asymptotic behavior of iterated power means experiences the same fate.) Thus
the question of finding good (asymptotic) approximations for the algorithm of the type in
question is by and large open.
The main purpose of this paper is to provide the reader a general background for this

problem, and to outline the meager progress myself have made on it. Maybe, can thereby
inspire other people to continue where stopped (failed)...
As Grunert’s Arehiv is nowadays virtually inaeeesible for most readers and as the common of

knowledge of Western languages, English excluded, among mathematicians is in such a sorrow

state, have included a translation of Meissel’s note [M] in eztenso (see Appendix).

1. THE agM.
G.F. Gauss [1777-1855] studied the agM. from an early age on (some say 14). Let a,b be

two real numbers, 0 < b _< a < cz. Taking succesively arithmetic and geometric means we get
a", and b, b’, b" withtwo sequences a, a’,

a+b b’
2

a’ b’a"- + b"-
2

It is easy to see that they converge to a common limit,

M(a, b)tlim a,, limb,,,

called the agM. of a and b. (We have b _< b’ _< b" _< _< a" _< a’ _< a and

.,_ e (/z-)
2 5(- )= l(a-)v-v <5

1

([G], p. 28).
The agM. and other related "means" are discussed in the survey [ACJP]. (For a more ex-

tensive treatment see e.g. the book [BB].) From there we recall only the following.
Basic properties of the Gauss agM.:
1) Extremely rapid convergence ("quadratic" in the techrfical sense).
2) Integral representation. As Gauss discovered, one has- [,,/2M(a,b) ao

de
v/a2 cos + b2 sin2 ’where the integral to the left is a complete elliptic integral of the first kind. In standard

notation, writing k b/a ("modulus"), k’ y/1- b2/a2 ("complementary modulus"), the

latter is just g(k’)/a (cf. [BB], theorem 1.1). Thus the formula can also be written

M(a,b)=a

The importance of the agM. therefore stems in part from the fact that it connects with "elliptic"
theory (elliptic integrals, differentials, functions, curves).
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1
3) Differential equation. The function y satisfies a differential equation vith

M(1, k)
algebraic coefficients (known as Legendre’s differential equation)

k(k 1)y" + (3k 1)y’ + ky O,

which after a change of variable becomes a special case of the hypergeometric equation, likewise
considered by Gauss.

4) Uniformization. Writing a and b in the form

a Mp2(x),b= Mq2(x) (M M(a,b)),

where p and q are, what Gauss calls, summatoric functions (= theta values; in conventional
notation p(x) Ooo(O,t), q(x) Ool(O,t) where x eit), the algorithm reduces to z x2.

5) Complex values. Using the uniformization it is possible to extend the algoritm to the case
of complex values of a and b. Then the limit M(a, b) is not any longer unique and the values
corresponding to different "determinations" of it are related by a modular transformation.

This is also one of the historic roots of the theory of modular functions.
6) Asymptotic formula. Central in Gauss’s treatment of the agM. is the asymptotic formula

M(1, k) (k 0).
log

I can be readily derived from the following formula for the uniformizing parameter, likewise
due to Gauss (see again the discussion in [nn]):

2. BORCHARDT’S GENERALIZATION OF THE agM. WITH FOUR "ELEMENTS".
C.W. Borchardt [1817-1880] was a student and close friend of Jacobi’s. He also edited volume

one of Jacobi’s collected works and became the editor of "Crelle’s Journal" after Crellc’s death;
therefore this journal was for some time known as "Borchardt’s Journal". He proposed as a
generalization of the agM. the following scheme based on the iteration of the transformation

bf

C

a+b+c+e
4

2

2

It turns out that this algorithm has a theory entirely parallel to Gauss’s. In particular, one has

proper counterparts of all the properties 1)-6) mentioned in Sec. 1, with the possible exception

of 6). The "uniformization" is now obtained by theta functions in two variables and in place
of the elliptic curve now enters Kummer’s quartic surface. Borchardt also briefly indicates

a 2’*-dimensional generalization, but for various reasons this algorithm is far more defective,

largely because theta functions in n variables do not suffice for purposes of uniformization. We
quote ([Bore], p. 621): "... but of which kind these transcendental functions are, in terms of

which the limit can be represented, is a question whose answer must be left for the future".

3. THE "MONSTER" ALGORITHM.
In [ACJP] it is pointed out that both Gauss’s and Borchardt’s algorithm are special cases

of the following very general construction. Let G be any compact group. Let f be a positive
meast/rable function in the Lebesgue space L1/2(G). Then f’ vr] v/]", where stands

for convolution (with Haar measure so normalized that 1 1 1), is a function of the same
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type (in fact, in L’(G)). Similarly, f" v/-f v/ is a continuous function (in C(G)).
Continuing we obtain a sequence of functions which, as is proved in [ACJP], tends pointwise,
in fact uniformly, to a constant functions, denoted M(f) or Ma(f) (and identified with the
corresponding number).

Properties:
O) M(1)= 1.
1) M(Af) AM(f) (A > 0) (homogeneity).
2) inf f < M(f) < sup f.
3) M(f) < M(9) if f < 9 a.e. (monotonicity).
4) M(f + 9) > M(f) + M(9) (concavity).
It is likewise mentioned in [ACJP] that if we pass to complex valued functions f, assuming

that Ref > 0, the same convergence holds true, but this is much harder to prove.

EXAMPLE. For instance, if G ZI" and if f is analytic inside the unit disk D (we make the
identification OD Z/’) then M(f)= f(0).

We are however mostly interested in the case of finite groups.

EXAMPLE. If G C2 (the cyclic group with two elements) we get back Gauss’s algorithm
and if G C2 x 6’2 we get Borchardt’s algorithm. Borchardt’s generalization with 2" elements
similarly corresponds to G C’. The first non-classical case is thus G C3 (the cyclic group
with three elements). Spelled out explicitly it is thus question of iterating the map

a+b+c
a

3
2v+c

3

c’= 2/"+ b
3

4. ALGORITHMS DERIVED FROM THE "MONSTER" ALGORITHM.
Let us return to the case of a general group G. For simplicity we take G finite. Let H be

any subgroup of G. We restrict attention to functions f which are constant on H and on the
complement HC G\H, i.e.

{a /-/
f= b H

Then the iterates are of the same type:

f,= { a + (1 -)b fe=d a’

’+ (1 -)b fe_d b’

f’= 7+(1 )b’

where N la" HI IGI/IHI is the index of H in G. (By Lagrange’s theorem we know that
N is an integer.) Thus we are lead to consider, quite generally, the 2-dimensional algorithm

(1)
a’= 0(1 a) + 0b

b’ 20V/’ + (1 20)b 0(1 a) + Ob 0( v/)2’

where 0 is any number in the interval (0, 1/2].

REMARK. The same game can be played with a tower of semigroups, say,

G=G,.:DG,._ D...DG DGo=E.
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Restricting attention to functions f which are constant on the sets G,\G,-1 (i 1,...,r),
that is, f[al al, f[a,\al a2, f[a.ka.-I ar with [GI[-- o1, [G2\GI[ a:,
IG\G-ll , 1+-.-+r Ial, we re faced with the r-dimensional gorithm (0, ,/Ial)

a 01 a + + Ora
201+

(1’) a 201+202+ (03 01 02)3 + 04a4 + + Or

a= 20a+202+...+20_a_aa+(O-Oa-...-O_a)a

Notice that one c Mso write

=’ 011 + + 0= 0( )= 0=( )=
-0_,(-)

PROOF OF (1’). Indeed consider the equation jk.
Assume first that G1. Then we have the following possibilities:
j Ga, k G1 coesponds to a te al,

j G2G1, k G2G corresponds to a te 2a

j GG-I, k GG_i corresponds to a term a.
This accounts for the foula for a.
Next sme that G2G. Then we have the following possibilities:
j GG2, kG2G orj
j =, a=ka opona to re= (= -)==
j GsG2, k GzG corresponds to a te sas

j GG_x, k GG_a corresponds to a term aa.
This accounts for the foula for a.

In the se way one treats the ce GsG2. The proof is concluded by induction
argument.#

5. MEISSEL.
In a short note [M] (of. Appendix to this paper) published in 1874 in Grunert’s Archiv

(D.E.)F. Meissel [1826-1895], who was headmaster of a secondary school in Kiel, Germany,
toward the end of the last century, considers the iteration

a+b+c

+ac + bcv/ab 3

In particular, he states without proof the following asymptotic formula for the corresponding
limit M(a, b, c):

(2) M(1 1 c)(
A
B )x c-O

log

where A 0.43331485... is obtained, upon eliminating of k, from the equations:
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3 3

I+ V3

and A and B are certains constants

A 0.3951642..., B 10’299z49"’’.

(The exact meaning of is not clear from the context; actually, Meissel himself writes simply
in formula (2).)
In Sec. 8 will give an attempt to justify Meissel’s formula (1).

REMARK. In the excellent book [BB], p. 268-269, this algorithm is called Schl6milch’s
algorithm and in this context reference is made to a paper by Schoenberg’s [Scho], which
however has been inaccessible to me. have checked with the index of Jahrbuch up to and
including the year 1903 (the year of my mother’s birth) and found only one paper of SchlSmilch’s
dealing with iteration of means, namely [SchlS], but it does not seem to be very relevant in the
present context.

6. DISCUSSION (THE COMPUTER EXPERIMENT).
Guided by the asymptotic formulae by Gauss and Meissel suggested in [P2] the following

approximtion of the limit M(a, b) of the iterations of the transformation (1) in Sec. 4"

1(3) M(1,b)A 4 (b-,O)
(og )

made also numerical experiments on a minicomputer, which to some extent seemed to
support my guess. Here are some values for the constant A obtained:

N= 2 A 1.570796327...

N= 3 A 2.3410...

N= 4 A 3.289868133...

N= 5 A 4.420...

N= 6 A 5.738...

N= 7 A 7.251...

N= 8 A 8.96...

I thought at the time that had a rigorous proof of (3) interpreted as a genuine asymptotic
formula so did not pay much attention to the fluctuations in the numerical data, which seemed
to increase with N. Of course, as (3) reduces to Gauss’s formula if N 2 there are no such
fluctuations in this case and also not in Borchardt’s case (N 4). Therefore Borwein’s letter
[Borw] came as a surprise, if not a shock. However, now quickly realized that the fluctuations
really were part of the picture (in all other cases but N 2, 4) and not something connecting
with the insufficiency of the numerical device available to me. This will be explained in the
next Section.
The numerical experiment thus suggests only the following: There is an exact asymptotic

formula only if N 2,4 and there can be an integral formula .for the limit of the Gauss-
Borchardt type only in these two cases. But, emphasize, this is something that have not
proved so it is therefore just question of another conjecture. In the former case A r/2 exactly
and the latter case probably A 2/3.

7. EXPLANATION OF THE FLUCTUATION.
In inhomogeneous notation (M(b) M(1, b)) the functional equation for the limit/ll of the

algorithm (1) can be written
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(4) M(b)-g(b)M(b’),

where we for convenience have put

() + ( ).

It is easy to see that the only solution of the functional equation (4) which is analytic near
b 1 normalized by the requirement M(1) 1 comes as an infinite product

(5) M(b) g(b)g(b’)g(b")...

This is connected with the fact that b 1 is an attractive (even hyperattractive) fixed point
of the map

20vf + (1 20)b- b’
+ ( )

and that g(1)- 1, which guarantees the convergence of the product in (5). (In (5) b’,b",..., of
course, are the iterates of b under this map.)

Next, consider instead the functional equation

(6) Z(b) h(b)Z(b’),

where now

h(b)
g(b) 0 + (1 0)b

b 0 is a repulsive fixed point for the map b - b’, hence an attractive (again even hyperat-
tractive) one for the inverse map b H ’b. (If b is small then b’ 2v/ so that for the inverse
holds b H ’b . b2/4.) Also h(0) 1. It follows, by the same reason as before, that there is a
unique solution of (5), analytic at b 0 and normalized by Z(0) 1. One can thus write

Z(b) 1 + Zlb + z2b2 +
and it is possible to write down a recursion for the coefficients zn, which generalizes the one
used by Gauss [G].

Finally, consider
N() (N(’)).

This is essentially Bhttcher’ equation for the inverse map (see e.g. [ACJP]). It follows that
there exists a unique solution which admits the expansion

4
N(b) - + no + nb + n2b: +

thus in partcular satisfying
4

N(b) - (b 0).

REMARK. The letters Z and N are picked in honor of Gauss (for German Zhhler, nominator,
and Nenner, denominator, respectively). Do not confuse the function N N(b) and the
previous integer valued parameter N (= the index of the subgroup H the finite group G); see
Sec. 4.

Now it is clear that the function

satisfies the same functional equation (4) as our mean M. The quotient is a function which is
invariant under b b’. It follows that we have

M M’. O,
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where O is an "oscillatory" function, that is, invariant under the transformation b b’ (O(b)
O(b’)). Now the presence of the fluctuations is completely explained. Our above conjecture (end
of See. 6) amounts therefore to O const iff N 2, 4.
REMARK. A natural parameter near b 0 seems to be 1/N(b) or even better

t=2

1
log log

N(b)
log2

(If b b then + 2r.) Therefore one can go a step further an ask for the Fourier
development of the function O:

O A0 + A1 cost + Ba sin + A2 cos 2t + B2 sin 2t +
We see thus that, in a way, what we have observed in the numerical experiment is just the 0-th
coefficient A A0 in this expansion.

PROBLEM: To account for the "higher" terms!

8. ATTEMPTS TO JUSTIFY MEISSEL’S FORMULA.
We return to Meissel’s algorithm (See. 5), denoting its limit by M(a,b,c). The following

properties of M(a, b, c) are obvious:
1) M(Aa, Ab, c) ,kM(a, b, c) (homogeneity),
2) M(1,1,1)-- 1 (normalization),
3) M(a, b, c) M(a’, b’, c’) (invariance).
Now we make the "Ansatz":

M(a,b,c) A(log B---) -’x,
where A A(a, b) is supposed to be homogeneous of degree 1 and B B(a, b) homogeneous
of degree 0. Plugging this into the functional equation we find

B
_

A(a.+b b3

B(a+b b3"-’A(log -) 3
)-(log ))-

Write
A’ A(a’, b’), B’ B(a’, b’).

The log-factors to the left and to the right can be written as

(log
1
+ log B)-

respectively

This gives

1 1 1 1 B_a 3a( 1 1
log -c + log - + log log -c + log - + 3 log B’

A A3 ].
and

logB=log-+31og or B=
ab

This seems to reduce the problem to the iteration of a two dimensional homogeneous map:
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a’= a+b
3

b’= --b3
xvhich in the base (t a/b) induces the map

t+l

having one repulsive fixed point k-1 determined (as in [M]) by the equation

k(1 + k) 3.

The b-equation can be written

Hence the A-equation is satisfied by

vith

whence (as in [M])

The B-equation can be written

or, in inhomogeneous notation,

In particular,

That is,

or iterating

3 3

lk V3’

log(1 + t)
log 3

(b’) a’
bB(

o’ 1) --g- (B( b-7, 1))3

tl/2
(t) --. ((t’)).
B(t)

B(k_l) V,B(k_I))
1 1 1

B() B(-)() .(. ,) .(. ,,)r
Thus A and B do "exist". It is however not at all clear to me in what sense M is approximated

in terms of the functions A and B.

NOTE (added Sept. 1988).Recently J. and P. Borwein sent me a truly marvelous paper
a+3b

)" where in particular the conjectureentitled "On the mean iteration (a, b) -- 4 2
about the asymptotic behavior of the Borchardt mean at the end of Sec. 6 is fully established.
Even more, the authors show that the mean in question shares with the agM. practically
all of its remarkable properties (see See. 1), in particular thus that the algorithm can be
"uniformized" in terms of theta constants.
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APPENDIX. TRANSLATION OF MEISSELS’S NOTE [M].

REMARKS ON THE HYPERGEOMETRIC SERIES.

Recently communicated to Professor Rfimker in Hamburg the following relation:

de f0 de

which I incidentally found as a byproduct in investigations concerning the Gauss hyper-
geometric series. Another relation is

" de cos(
7rc f0 "(1 k: sin )+’r -’) V/i- k sin

do not remember having seen it anywhere.
What I really aimed at was really an extension of the investigation, originating from Lagrange

and further amplified by Gauss, of the limit to which the sequence of (successive) arithmetic
and geometric means of two numbers a and b converges, and considered the equations

3an+ =an q- bn h- Cn

3b+a =a,b, + anCn + bncn
__anbncnCn+l
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writing aoo boo coo M(a0, b0, c0).
In particular, was interested in the extremal case

a0=l; b0=l; co very small;

and found then as a limit of aoo boo coo

(1) M(1,1, w)=(
A ),B

log

where A, B, A are constants and in fact

* 1
log(1 + k)

log 3

where k is the root of the equation
( + )’ .

The value of A is
A 0, 43331485.

For simplicity we take the log to be Briggian and then the values of A and B become approx-
imtely

A 0,3951642

log briggB 0,299 7049

have carried out the computations for very small w and, for example, found directly that

1
for w 1--0-, M 0, 16783257

1
for w

106561
M 0,01483609

Kiel, April 8, 1874. E. Meissel



Mathematical Problems in Engineering

Special Issue on

Modeling Experimental Nonlinear Dynamics and
Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the
70s, was focused on intentionally built nonlinear parts in
order to improve the operational characteristics of a device
or system. Keying, saturation, hysteretic phenomena, and
dead zones were added to existing devices increasing their
behavior diversity and precision. In this context, an intrinsic
nonlinearity was treated just as a linear approximation,
around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear
and chaotic phenomena, engineers started using analytical
tools from “Qualitative Theory of Differential Equations,”
allowing more precise analysis and synthesis, in order to
produce new vital products and services. Bifurcation theory,
dynamical systems and chaos started to be part of the
mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Prob-
lems in Engineering aims to provide a picture of the impor-
tance of the bifurcation theory, relating it with nonlinear
and chaotic dynamics for natural and engineered systems.
Ideas of how this dynamics can be captured through precisely
tailored real and numerical experiments and understanding
by the combination of specific tools that associate dynamical
system theory and geometric tools in a very clever, sophis-
ticated, and at the same time simple and unique analytical
environment are the subject of this issue, allowing new
methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

Manuscript Due December 1, 2008

First Round of Reviews March 1, 2009

Publication Date June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and
Control Engineering Department, Polytechnic School, The
University of São Paulo, 05508-970 São Paulo, Brazil;
piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de
Matemática Aplicada e Computação (LAC), Instituto
Nacional de Pesquisas Espaciais (INPE), São Josè dos
Campos, 12227-010 São Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research,
King’s College, University of Aberdeen, Aberdeen AB24
3UE, UK; grebogi@abdn.ac.uk

Hindawi Publishing Corporation
http://www.hindawi.com

http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1Call for Papers4pt
	Guest Editors

