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ABSTRACT. It is shown that the category of non-Archimedean metric spaces with 1-Lip-
schitz maps can be embedded as a coreflective non-bireflective subcategory in the cate-
gory of fuzzy uniform spaces. Consequential characterizations of topological and uni-

form properties are derived.
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1. INTRODUCTION.

We show that the category NA(1l) of non-Archimedean metric spaces with metric bound-
ed by 1 and with morphisms the non-expansive maps is coreflectively embedded in the cate-
gory FUS of fuzzy uniform spaces [4], [9] in an extremely simple and natural way.
Through the forgetful functor FUS -+ FNS [5] each space in NA(1l) then moreover determines
a non-topologically generated space in FNS, the topological modification (i.e. TOP-core-
flection) of which is nothing else then the metric topology. This means that the dia-

gram

NA(1) —=mbedding o pyg

forgetful forgetful
v functor J functor
TOP < coreflection FNS

is commutative. From a local point of view, an interesting aspect of this situation is
that given (X,d) we can study this space first with the concepts available in FUS [4],
[9] and with those available in FNS [5], [6] before going to the topological space
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(X,ﬂ?d) associated with (X,d). E.g. we can "forget" at intermediate stages.

From a global point of view embedding NA(1) in FUS also seems natural. E.g. the func-
tor NA(1) » TOP does not preserve products. NA(1), although being coreflectively em-
bedded in FUS, is not bireflectively embedded, in particular the embedding does not
preserve products, but it are precisely the products in FUS and in FNS which are mapped
onto the topological product in TOP (TOP is both coreflectively and bireflectively em-
bedded in FNS). Thus in order to have a more faithful relation with TOP it seems suit-
able to consider NA(1l) as a subcategory of FUS. In particular we further study comple-
teness of NA(1)-objects in FUS, and we also give a fairly complete account of the most
important topological properties of NA(1l)-objects in FNS.

2. PRELIMINARIES.

Most notions used are standard, we just recall some notations and some concepts
specific to the context.

As alwaysz; stands for the strictly positive real numbers, I := [0,1],
I, := ]0,1] and I1 := [0,1([.

0
If X is a set and A c X, 1A stands for the characteristic function of A. If A eI

and § € IX’(X then YP<A> € Ix is given by p<A>(x) = sup A(y) A y(y,x). If A = l{x} we

X
we simply put ¥<x> and obviously y<x>(y) = w(x,y).yeAlso Yoy € IXXX is given by
Vo w(x,y) = sup ¥(x,2) A ¥(z,y).
. zeX X N
Further A stands for the prefilter {pIA S p} and if B cI” is a prefilter base then B

stands for the prefilter [{ sup (Be-e)|(BE)€ eB 0}].
e€l

0
If d is a pseudometric on X then we put ﬂ?d and IJd resp. the associated topology

X

and uniformity.

If d fulfils the strong (or ultrametric) triangle inequality we call it a non-
Archimedean pseudometric.

The functors 1, tyr W W, are well-known [3], [4], [5] but we recall the functors

ha b FUS - UNIF determined by

t,al U 1= (WTBLD (8 € [0,1-a,u « )

and t : FUS » FTS where then t(¥U) stands for the fuzzy topology associated with U and
T : UNIF » TOP where then T(U) stands for the topology associated with U. For a pre-
filter ¥ [3], we recall also that its characteristic value is given by

o(F) := inf sup A(x) = inf{a € I|a € F}.
A€F xeX
If (X,U) € |[FUS| and C is a prefilter on X then it is called a hyper Cauchy prefilter
[9] if it satisfies the conditions

(HC1) c(C) =1
(HC2) € =¢C
(HC3) v vedUuU, ¥Yece IO’ 3 u € C: Mo X M, T E SV

In [9] it was shown that for any hyper Cauchy prefilter C, there exists a unique mini-
mal hyper Cauchy prefilter CO c €. Moreover, if B is a basis for € and W a basis for U
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then
Cy= vaw|vew, pe B} .

A fuzzy uniform space (X,U) is called ultracomplete [9] if for each minimal hyper
Cauchy prefilter C there exists x € X such that € = U(x) where U(x) := {pu<x>|u € U},
which is equivalent to the fact that (x,xu(u)) is complete.
Finally, (X,U) is called precompact [9] if it satisfies the condition :
vxeX, VYee 10, jYe Z(X) : sup v<x> 2 1 - €, which is also equivalent to the fact

xeY
that (X,\u(u)) is precompact.

3. DEFINITIONS AND FUNDAMENTAL PROPERTIES.

We first put together some elementary technical properties.

LEMMA 3.1.
1° If X is a set and d £ 1 a non-Archimedean pseudometric on X, then

wd :=1-d : X x X > I has the following properties :

a. ¥yxeX: wd(x,x) =1;
b. wd is symmetric;
c. wd o wd = wd, or equivalently :

¥ (x,y,z) € 3 by(x,z) A ¥ (z,y) 5 b,(x,y).

2° If conversely y € IX,(x has the properties

a. ¥xeX: p(x,x) =1
b. ¢ is symmetric
c. voy =y,

then d¢ :=1- ¢y is a non-Archimedean pseudometric on X for which dW s 1.

3° If d £ 1 is a non-Archimedean pseudometric on X, and if we put

D_ = {(x,y)|d(x,y) < r},
B(x,r) = {y|d(x,y) < r},
then
v e =D, (vy<x>) H(Ir,11) = Blx,1-1).

PROOF. Straightforward. L]

In the sequel, if no confusion can arise, we simply put y resp. d instead of wd
resp. d, .
sp v
THEOREM 3.2. If d £ 1 is a non-Archimedean pseudometric on a set X, then {¥}, with
Y :=1-d, is a basis for a fuzzy uniformity W(d) on X, where

B(d) := (¥} = y.

Conversely, if U is a fuzzy uniformity on X, having a singleton basis {y}, then this
function y satisfies the conditions a, b, ¢ in Lemma 3.1.2°, and therefore U = U(d)

where d:= 1 - ¢ is a non-Archimedean pseudometric.
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PROOF. The first part follows from Lemma 3.1.1° and the second part from the defi-

nition of a basis of a fuzzy uniformity [4] and an application of Lemma 3.1.2°. L

We now describe the general properties of U(d), where it is always supposed that d

is a non-Archimedean pseudometric such that d s 1.

PROPOSITION 3.3. The following hold :

1° for all a € Il’ a basis for 1 a(U(d)) is given by {Drlr € Ja,1]}, and therefore
s’
‘u,a(u(d)) < Uys
2° for all (a,x) € I1 x X, the neighborhoodfilter bia(x) of x in \u(t(u(d))) has
{B(x,r)|r € Ja,1]} as a basis;

3° 1u(ﬂ(d)) = IJd and so T(1 (U(d))) = ﬂfd;

4° for all a € I1 T (t(U(d))) T(t (U(d)));
)
5° for all u € IX, the closure u and the interior §i of u in t(UW(d)) are given by

B(x) = sup u(y) A w(y,x), W(x) = inf p(y) v d(y,x).
yeX yeX

6° A € t(U(d)) iff there exists a partition PA of X by means of balls, i.e. a subset
Y € X and a function p : Y » I with PA = {B(x.px)lx € Y} such that AlB(x,px) = 0,3

7° lu(t(u(d))) is Hausdorff iff d(x,y) > a for all x = y;
8° (X,0(d)) is WT2 iff d is metric;

9° (X,0(d)) is T, iff d(k.y) =1 for all x # y, i.e. iff d is the discrete metric.

2

PROOF. 1° Immediate from the definition of ‘u (B(d)) and from ¥ (]1 r,1]) = D .
2° From Lemma 3.1.3°, and the fact that (X,0(d)) 1s a fuzzy neighborhood space.
3° From 1° and 1“(U(d)) = 1“,0(U(d)).
4° This is a know property of general fuzzy uniform spaces.
5° Immediate from Proposition 2.4 in [5].
6° If A € t(U(d)), x € X, A(x) = a and d(x,y) < a, it follows from

A(y) = A(y) = inf A(t) Vd(t,y) s A(x) V d(x,y)
teX

that A(y) £ a. However, we also have

@ = A(x) = A(x) = inf A(t) V d(t,x) s A(y) V d(x,y),
teX

hence A(y) =
This means that A~ (a) U{B(x,a)|A(x) = a}, and as each two of these balls are either
identical or d1SJo1nt, we can choose Y < X such that {(x, a)lx €Y } is a disjoint fa-

mily with A~ (a) as a union. Putting Y 1= U Y » Py 1= iff x € Y , we are done.

Conversely, if A € IX is such that the described partition exists and if a € Il’ we have

A e, 10) = UiB(x,p ) [x € 07 e, 1],

which is clearly open in ta(t(u(d))). Since (X,t(U(d))) is a fuzzy neighborhood space,
t(0(d)) is maximal for its level topologies [13], and therefore A € t(U(d)).



CATEGORY OF NON-ARCHIMEDEAN METRIC SPACES 51

7° This follows from the fact that, by 1°, 1 (t(U(d)) is Hausdorff iff n D_ is
a rela,l] "r

the diagonal of X x X.

8° This is nothing else than the definition of WTZ.

9° (X,0(d)) is T, iff y(x,y) = 0 for x # y, so iff d(x,y) =1 for x = y. L

2
REMARKS 3.4. 1. If d s 1 and d' < 1 are equivalent, the fuzzy uniformities U(d) and

U(d') are nevertheless in general different.

2. In the foregoing it was always supposed that d s 1. Starting from an arbitrary d,
we can define a family of fuzzy uniformities. Indeed, given the non-Archimedean pseudo-
metric d on X and € EIRO, we can define ds = ( d) A 1, which is equivalent to d, and
consider U(d ) = W , where b =1- = (1-— d) v 0. Even in this case the fuzzy
uniformities U(d ), € E]RO, are in general not equivalent to each other, (some interest-
ing relations w111 be established in Propositions 3.5 and 4.), e.g. if X := ﬁ“ where
|X| 2 2 then it is well known that d given by
0 ¥n: X =y,
d(x),(y))=={ -
R (min{klxktyk}) 1 otherwise
is a non-Archimedean metric on X, and it is easily seen that (X,U(de)) and (X,0(d_,))

are not isomorphic if € # ¢'.

3. It is evident that the properties of U(ds) can be obtained from the corresponding
ones of U(d) by replacing everywhere d by de' So for instance, it follows from Propo-
sition 3.4.1° that a basis for lu’a(ﬂ(dc)) is given by {D;lu < r} where

D = {(x,y)|d(x,y) < er}.

Since this translation of properties of U(d) into properties of U(dt) is a simple exer-
cise, while the formulation of the former is simpler, we shall continue to restrict

ourselves mainly to the case d s 1.

4. From Proposition 3.3.6° it follows that all elements of t(U(d)) are 1-Lipschitz, the
converse however is not true. Consequently t(U) is strictly coarser than the structure
A(1) of [7].

PROPOSITION 3.5. The following hold :

1° €' s e => U(de) c U(de,);
2° inf_ W() = {1};

eeﬂR;
3 sup, U(de) = w“(le).
X313
0
PROOF. 1° is evident, and for 2° it suffices to remark that if u € 1nf U(d ) then
wzl-1dforalleeR. ek

0°
For 3° note that by Proposition 3.3.3° for all ¢ e:m we have U(de) c wu(tJd) i.e.

sup U(d ) c w, (IJ ). The converse inclusion tollows at once upon remarking that for
e€R
0

all € E]R; we have IDE €U(d,) and that {Dele e]R;} is a basis for U,. .

4. CONTINUITY AND CONVERGENCE
PROPOSITION 4.1. A map f : (X,0(d)) » (X',0(d')) is uniformly continuous if and only
f: (X,d) > (X',d') is 1-Lipschitz, i.e. non-expansive.




52 R. LOWEN, A.K. SRIVASTAVA AND P. WUYTS

PROOF. Immediate from the fact that ¢ s (fxf)-l(w') if and only if d' o (fxf) sd. =

Since in the case of the above result the local character of the Lipschitz condi-
tion has disappeared we reformulate the foregoing result in the general case. With
Remarks 3.4.2 and 3.4.3 in mind, the proof is obvious.

COROLLARY 4.2, A map f : (X,U(ds)) > (X',U(dé,) is uniformly continuous if and only if
]
f : (X,d) » (X',d') is e-locally %—-Lipschitz. ]

For concepts and results concerning convergence we refer to [2], [3].

PROPOSITION. 4.3. If ¥ is a filter on X then F -+ x in (X,d?d) if and only if
lim w(F) = y<x> in (X,t(0(d))).

PROOF. As Theorem 5.3 in [7].

In spite of Remark 3.4.2 in special cases the spaces (X,U(de)) and (X,U(dc')) can be

isomorphic.

PROPOSITION 4.4. If X is a non-Archimedean normed space then all (X,U(de)), € eIR;,

are mutually isomorphic.
PROOF. As Theorem 5.2 in [7]. .

5. COMPACTNESS.

For concepts and results on compactness and precompactness we refer to [6], [9].
THEOREM 5.1. The following are equivalent :

1° (X,0(d)) is compact
2° (X,0(d)) is precompact
3° (X,d) is totally bounded.

PROOF. The implications 1° => 2° => 3° are trivial. To show 3° => 1° let € € 1.

0
If Y ©c X is a finite subset such that X = U B(x,e) then we have inf d(x,t) < € for
x€Y x€Y
all t € X which is equivalent to sup ¥<x> > 1 - € which by Theorem 2.2 in [6] proves

. xeY
our claim. L

REMARK 5.2. Since for any € € lﬁ; we have that de is totally bounded if and only if
d is totally bounded, it follows from the foregoing result that either all spaces

(X.U(de)) are compact or none of them is.

6. COMPLETENESS.

For concepts and results concerning completeness and completions we refer to [9].
The following result is an immediate consequence of Theorem 4.5 in [9] and Proposition
3.3.3°.
THEOREM 6.1. The following are equivalent :
1° (X,d) is complete
2° (X,0(d)) is ultracomplete. ]

Given (X,d) we can now construct the following completions.
I. (X,d) the metric completion of (X,d)
II. (i,U(h)) the ultracompletion of (X,U(d))
III. (X*,qule)) the ultracompletion of (X,wu(le)).



CATEGORY OF NON-ARCHIMEDEAN METRIC SPACES 53

Then we obtain the following collection of complete or ultracomplete spaces.

IV. The complete space (X,1 ®))) .
V. The complete space (X 1y (w (IJ ))).
VI. The ultracomplete space (X;U(d))
VII. The ultracomplete space (i,wu(IJa)).

Now it follows from [9] that
o PR
1° (X,mu(lJa)) and (X ,mu(IJd)) are isomorphic
- A s * -
2° (X,IJE), (X,tu(u(d)) and (X ,1u(mu(IJd))) are isomorphic

Using the methods of [9] it can be shown conceptually that the remaining spaces (X,U(d))
and (i,u(d)) are isomorphic too.
However, we prefer to explicitly describe the isomorphism which at the same time allows

us to describe the points of X too.

Given the non-Archimedean space (X,d), its metric completion (X,d) can be considered
as the set X of all equivalence classes of equivalent Cauchy sequences in X, equipped
with the metric d defined by d(x,y) = 11m d(x A ), where (x ) and (y ) are arbitrary
representatives of x and y respectively
The ultracompletion [9] of (X,U(d)) is given by (i.u{d)), where i is the set of all mi-
nimal hyper Cauchy prefilters on (X,U(d)), and where Uzd) is the fuzzy uniformity gene-
rated by {@}, this function being defined by

w(cl,cz) =1 - inf{e|3 B €€y N Cz tu X u S b +e).

LEMMA 6.2. If (xn)n is a Cauchy-sequence in (X,d), the sequence (¢<x >) converges uni-
formly to a mapping y(x) : X > I : t » lim w(t,x ) which depends only on the equivalence
class x of (x ) , and which has the following properties H

a. sup y(x)(t) =1,

teX
b. Y(i) x Y(i) s,

c. p<y(x)> = v(%).

PROOF. If t is the class of the constant sequence (tnst)n, we know that
d(t,x) = lim d(t,x ) is independent of the choice of (x_ ) € x.
ey n n’n

If ¢ > 0 and n, is chosen such that

0
P21y q2n; = v(xp,xq) 21 -¢,

then for x € X, p 2 ng, q 2 n, either w(x,xp) <1 - ¢ and then w(x,xq) = w(x,xp), or
w(x,xp) 2 1- € and then also w(x,xq) 2 1-€, so in any case Iw(x,xp)-w(x,xq)l s €, which
proves the uniform convergence. The property a follows by considering y(i)(xn), and b
and c follow by standard verification. L]

It follows from the foregoing lemma, that the prefilter I'(x) = {y(X)} = yki) is a
minimal hyper Cauchy prefilter on (X,U(d)), and so we obtain a mapping I' : X + X.

LEMMA 6.3. If C is a hyper Cauchy prefilter on (X,U(d)) then there exists a Cauchy se-
quence (xn)n in (X,d) such that
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a. Y¥neN: vy FSW¢QQEC;
n k2n . .
b. (Yn)n converges uniformly to y(x) € C, where x is the equivalence class of (xn)n;

c. Y¥neN: :y x Yo sy + o, where lim p 0.

=
n nae N

PROOF. It follows from (HC3) that we can find a non-increasing sequence (Bn)n of
elements of C such that for all n €N :

-n
By X B sv+2. (1)
By (HC1) we can find a sequence (xn)n in X such that for all n €N :

-n-1
1-2 s sn(xn). (2)

Since (Bn)n is non-increasing it follows that

1-2"2¢ By (X 4y)

n+1

and consequently

-n-1
1-2 s Bn(xn) A Bn(x )

n+1) s w(xn,x

n+l
which shows (xn)n is a Cauchy sequence.

Further by (1) and (2) we have that for all n € N and x € X :

k

B (x) - 2% s By (x) A (1-27%1y - 7kl

2
-k-1

LY

Bk(x) A Bk(xk) -2
£ v(x k).

Thus it follows from (HC2) that for all n €N :

Y_ := sup y<x,> € C.
n k2n k

Since (w<xn>)n converges uniformly to y(x) the same is true for (yn)n and thus again by
(HC2) we obtain that y(x) € C.

Finally we still have that for all n € N and x,y € X :

= W( ,X) v Vi(x 'y)
Y, (x) Ay (y) kz:"!gn Xy m

sup  ¥Oxx) A v(x,y) A (bGx,x )42
k2n,m2n

WA

(Y

w(x,y) + 2777
We are now in a position to prove the isomorphism result.
THEOREM 6.4. The map
(X)) > (X,0(d)
is an isomorphism.

PROOF. To see that I' is into, let x,y € X, x # y and let (xn)n and (yn)n be repre-
sentatives of x and ; respectively. Then there exists € > 0 and ng € N such that for

all p,q 2 ng : d(xp,yq) 2 € which implies that for any p 2 n, we have Y(;)(xp) s1l-¢
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whereas lim Y(i)(xn) = 1. Thus v(§) # y(X) and therefore I'(y) = I(x).
no>e

To see that I' is onto, take C € i, and consider Y(Q) as constructed in Lemmas 6.2 and

6.3.

It then follows that I'(x) c €, and so € = I'(x) by minimality.

To show that I' is an isomorphism it now suffices to show that @d o (I'xT) = WE. Since
r(x) = y(x) we first have

WG IE) =1 - sup ((EIVY(F)) x GEIVYI))(s,t)-¥(s, 1)),

s,teX

Using distributivity in

VY () A (YEVY(F)) (L)

the symmetry of ¢ and the fact that y(x) x Y(§) s ¢, we obtain

VTGLTGE) = 1 - sup (YR (VY (F)(E)-¥(s,t))
s, teX

and from this it follows that in the end we have to show that for any pair of Cauchy

sequences (xn)n and (yn)n in (X,d) we have :

lim d(x_,y ) = sup lim(d(s,t)-d(x_,s)vd(y_,t)).
n’’n n n
s,teX niw

From the ultrametric property we obtain

while on the other hand, since sup : I

lim(d(s,t)-d(x ,s)vd(y_,t))

nio
s lim(d(xn,yn)Vd(xn,s)Vd(yn,t)-d(xn,S)Vd(yn.t))
n>o
= lim(d(xn,yn)-d(xn,s)Vd(yn,t)) Vo
noe

S lim d(xn,yn)
n-»>o

XX + 1 is continuous if Ix‘

uniform topology and I with the usual one, we have

sup 1im(d(s,t)'d(xn,s)Vd(yn,t))
s,teX ni»

= lim sup (d(s,t)-d(x ,s)vd(y ,t))
o s,teX

2 lim d(xn.yn).

n->oo

X

is equipped with the

In order to describe the points of i in more detail we have the next result.

THEOREM 6.5. The following are equivalent :

1°
2°

3e

C
C
a
b

C.

Cc

is a minimal hyper Cauchy prefilter on (X,U(d))
= § where 6 fulfils :

6 x 0 s ¢,
Y<o> = 9,
sup 6 = 1;

is a prefilter with a basis {xnln € N} fulfilling :
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a. VnEN:yn_._lSYn
b. YyneN: w<yn>=yn
c. VnEN.EXHEX:yn(xn)=

d. YneN:y xy s y+p_ where limp_ = 0.
n n n n
n->o

PROOF. Since 1° => 2° was proved in Theorem 6.4 and Lemma 6.2, while 2° => 1° and
3° => 2° are obvious, it is sufficient to prove 2° => 3°,
We can repeat the construction in Lemma 6.3 with Bn = 0 for all n e N. The sequence
(yn)rl has the properties a, c and d by the construction in Lemma 6.3. As to b, this

follows from

¢-<Yn>(x) = sup v (t) v y(t,x) = sup sup(uk(t)l\w(t x))
teX teX kzn

= sup sup(y, (£)Ap(t,x)) = sup y<u, >(x)
k2n teX k2n

= sup y, (x) =y (x),
k2n k n

where u, = w<xn>.
Since the minimal hyper Cauchy prefilter generated by {ynln € N} is coarser than C it

coincides with C. [

REMARK 6.6. A characterization of minimal Cauchy filters, probably belonging to the
folklore of the subject, and with a standard proof which we leave to the reader, is
given by the following ((X,d) is a pseudometric space) : F is a minimal Cauchy filter
on (X, U ) if and only if F is a filter having a basis (B )neN which is a non-increas-
ing chain of open balls B = B(x T ) with the property lim L 0. An alternative me-
thod for proving the isomorphism of (X U(d)) and (X.U(d?) can be based on this and on
Theorem 6.5. Indeed, we consider X as the set of minimal Cauchy filters on (X,d), and
the foregoing then allows a bijection between minimal hyper Cauchy prefilters on
(X,0(d)) and minimal Cauchy filters on (X,d).

7. CONNECTEDNESS

In [8] a number of connectedness concepts in G. Preuss' sense have been introduced
and studied.

We recall that a space (X,4) € |FTS| is called 2 -connected if and only if there
does not exist a non-empty proper subset A c X such that {ulA,alx\A} c A and is called
D-connected if and only if it is Zu-connected for each o € IO' For the meaning of the

notations 20. and D we refer to [8].

PROPOSITION 7.1. For a € I0 and A € 2X\{¢,X} the following are equivalent :
1 {alA,alx\A} c t(U(d))
2° d(A,X\A) 2 a
PROOF. This follows by straightforward verification using e.g. Proposition 3.4.6.
[8]. L

The following is an immediate consequence.
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THEOREM 7.2. The following hold :

1° (X,t(U(d))) is 2 -connected if and only if there exists no non-empty proper subset
A c X such that d(A,X\A) 2 aj

2° (X,t(U(d))) is D-connected if and only if there exists no non-empty proper subset of
A c X such that d(A,X\A) > 0. .

8. CATEGORICAL CONSIDERATIONS
Let NA(1) stand for the category of non-Archimedean pseudometric spaces (X,d) where
d £ 1 and with morphisms 1-Lipschitz or non-expansive maps. We already know that the

functor

NA(1) ———> FUS
(X,d) —> (X,0(d))

which leaves morphisms unaltered is a full embedding. Consequently we may consider
NA(1) to be a full subcategory of FUS. We shall now prove that NA(l) actually is a very

nice subcategory (see also [1]).
THEOREM 8.1. NA(l) is a bicoreflective subcategory of FUS.

PROOF. Given (X,U) e |FUS| put

(x,y) := inf v(x,y).
W" vell

Obviously by © wh = 2“’ Yy is symmetric and vV x € X : wu(x,x) = 1. Thus {wn} generates

a fuzzy uniformity U . SlInce du =1 - w" clearly is a non-Archimedean pseudometric, we
* *

moreover have U = U(dn). Since U > U it is also immediately clear that

4, : x,0%) » (x,0)

is uniformly continuous. Now, given (Y,W) € |[NA(1)| and a uniformly continuous map
f: (Y W) — (X,0)

we can choose a non-Archimedean pseudometric d $ 1 such that W = (wd}~ and it then fol-
lows that for all v e U : bgSvo (£fxf) and thus also Vg S ¥g o (fxf) which proves that

*
f: (Y M) — (X,0)
if also uniformly continuous. .

REMARKS 8.2. 1) In [15] it was shown that for (X,U) € |FUS| the Ty=» T;-» and T,-

separation functions Tor Tp» 11 and T, on (X,t(U)) are given by

To(x,y) = T (%,y) = 1 (x,y) = rz(x.y) =1 - inf v(x,y).
vell

Thus we simply have
= = ' =
N S Sy Tl T

2) It is easily seen that NA(1l) is not a reflective subcategory of FUS. If (Xj,ll(dj))jEJ

is a non-finite collection in |[NA(1)| then their product is given by ('FS X,,U) where U
JE

h]

is the fuzzy uniformity generated by
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wK|x c J, K finite}

and where wK is defined by

(N X)) x (N xJ)-—>1

v
K jeJ 3 jeJ

((xj)j’(yj)j) b i:]f( ‘bdk(xk,yk)~

Clearly, then ( M xj,u) ¢ |NA(D)].
eJ
NA(1) is howeveg closed for finite products in FUS.

9. DETERMINATION OF U(d) BY ITS LEVEL UNIFORMITIES
We recall [10], [11] that a uniformity U on X is called non-Archimedean if there

exists a collection ¢ of partitions of X such that { U P xP|P e ¢} is a basis for U.
PeP
In the sequel, if P is a partition of X, we shall write P(x) for the member of P

that contains x € X,

PROPOSITION 9.1. Y a(IJd) is a non-Archimedean uniformity on X, generated by
’
% := {I’rlr > a}, vhere P := {B(x,r)|x & X}.

PROOF. Since P (x) = B(x,r), we have P (x) x P (x) = {(y,2)|3 x e X :
d(x,y)vd(x,z)<r} = {(y,x)|d(y,z)<r} = Dr’ and it follows from Proposition 3.3.1° that
tu,a(IJd) is non-Archimedean.

The rest of the theorem is a reformulation in this particular case of well-known rela-
tions [12] between diagonal and covering uniformities and the fact that ]?t < l?s if

*
r<sand P = P. L}
An immediate consequence of this is the next result.

PROPOSITION 9.2. There exists a family (I?a)uel of partitions of X, satisfying the
condition I

G<B->PG<PB

and such that 1 a(u(d)) is generated by the family (I’B)
’
that

B> of coverings, i.e. such

{ U PxP[B>a)

Pel?B
is a basis for tu’u(ﬂ(d)).

But we also have the converse.

THEOREM 9.3. If (I>u)a51 is a family of partitions of X, satisfying the condition
1
a<B=>Pa<PB. (1)

then there is a non-Archimedean pseudometric d < 1 on X, such that for each a € I1 the

uniformity U , generated by (I?B)B>a is the a-level-uniformity 1u’a(u(d)) of U(d).
PROOF. We first remark that by (1)

I?a(x) = I?u(y) and a < B => l?B(x) = ]?B(y).

We can therefore define d : X x X + I by
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d(x,y) := inf{a|Pm(x)=Pu(y)} = sup{aIPa(x)ﬁPu(y)}

(with inf § = 1, sup # = 0). Clearly d(x,x) = 0 and d(x,y) = d(y,x). Further, if
d(x,y) = a' s a" = d(x,2),

then for all a > o" we have I’a(z) = I?a(x) = I’a(y), and therefore d(y,z) s a«". So d

is a non-Archimedean pseudometric, and we only have to prove that IJd = lu’u(ﬂ(d)).

First, if a < B, we can take r such that a < r < 8. If then d(x,y) < r, we have
I?B(x) = I’B(y), so (x,y) € U P x P, and therefore D_ ¢ U P x P. From Proposi-

PePy r PR,
tion 9.2 it now follows that U P x P e 1 (0(d)), whence U_c 1 a(u(d)) by ar-
PEPB a,u a u,

bitrariness of B > a. Conversely, if o < r, we can take a < B < r and then

d(x,y) 2 r = Ps(x) z PB(y) = (x,y) ¢ U PxP,

PeP
B
so U PxPcD, whence D € U_. Again, by arbitrariness of r > a, we obtain
PeP r r a
B
Iu’a(lJ(d)) © U, and so we are done. .
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