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ABSTRACT. Let F (c,B,M) (o ( p ( I, I(,I <-, o ( B < and H > I/2 ), denote the
P

class of functions f(z) which are regular in U- {z:Iz < I} and of the form
la

z
2f(z) z + la21 e- + where la21- p(l + o)(I-8)cos (,, which satisfy for

fixed M, z re e U and

ia zf" (z)
e B cosa- i sinf(z)

" < ""(l-B)eos

In this paper we have found the sharp radius of Y-splralness of the functions

belonging to the class F (a,8,M).
P
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I. INTRODUCTION. Let A denote the class of functions which are regular and univalent

in the unit disc U {z:[z < I} and satisfy the conditions f(O) 0 f’(O)-l.

Let F(e,8,M)(Ie <--, 0 < 8 < and M > I/@ denote the class of bounded

e-splralllke functions of order 8, that is f e F(,8,M) if and only if for fixed M,

la zf" (z)
e 8cos -i sinf(z) M < M, z e U. (I.I)(l-)cosa

The class F(a,B,M) introduced by Aouf [I], he proved that if

f(z) z + a2 z2 + F(a,B,M) then,

,la2l < (1 + o)(1-8) cos a, o --. (1.2)
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If E exp(-i arg a
2

is) then f(z____)= z + la21 e-laz 2 + e F(a 8,M)

whenever f(z) F(a,,M). Thus without loss of generality we can replace the second

coefficient a
2

of f(z) e F(=,,M) by la21 e

Let F (a 8,M) denote the class of functions f(z) z + la21 e-laz 2
p

which satisfy (I.1), where la21 p(t + o)(l 8) cos a. In view of (1.2) it

follows that 0 ( p I.

-laz2Let G (a 8,M) denote the class of functions g(z) z + Ib21 e + .... regular
p

in U and satisfy the condition

zg" (z))ela(l+
g’(z) 8cosa-i sin a

(1.3)

p(l+o)(l-6) cos a.

It follows from (I.I) and (1.3) that

g(z) O (a,B,M), if and only if zg’(z) e F (a,B,M).
P P

(1.4)

We note that by giving specific values to p,a,8 and M, we obtain the following

important subclasses studied by various authors in earlier papers:

(i) FI(a,,M) FM(a,) and GI(a,8,M) GM(a,8), are respectively the class of

bounded splralllke functions of order and the class of bounded Robertson functions

of order 6 investigated by Aouf [1] and FI(a,O,M) Fa, M and GI(a,O,M) G

are respectively the class of bounded spirallike functions and the class of bounded

Robertson functions investigated by Kulshrestha [2].

and Gp(a,,(R)) Op(a,8,), are considered by Omaranl

[3].

In this paper we determine the sharp radius of T-spiralness of the functions

belonging to the class F (a,8,M), generalizing an earlier result due to Kulshrestha
P

[2], Llbera [4], Umarani [5,3].

he technique employed to obtain this result is similar to that used by McCarty

[6] and Umaranl [3].

2. THE SHARP RADIUS OF Y-SPIRALNESS OF THE CLASS F (a,,M), M > I.
P

LEMMA I. If f(z) e F (a,,M)M > I, then
P f( oI o (2.1)
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where

.1+o
(l+pr) 2 + {[(I-)(----) -i] cos a-i sin a} e-lar2(r+p)

w (2.2)
(l-r2)(l+2pr + r2)

and
+o) 1-8 )cos r( +p r) (r+p)

1-r
2 (1 +2pr+r2

This result is sharp.

(2.3)

PROOF. Let f(z) e F (a,8,M), M > I. then there exists a function w(z) analytic
P

in U and lw(z) < in U such that

1+o+ (I-)(---) -11 ow(z)
zf (z)

e =.,_.. cos }+ i sin a, o
Ow(z)

or

zf’(z)
f(z)

.1+o+ {[(l-)(--r-) -1] cos -i sin } e laow(z)-

o w(z)

Solving for w(z),

w(z)

zf’(z)
f(z)

zf’(z) -1+oo[ f(z) + {[l-B)(---) -I] cos a-i sin a} e-la]

Since f(z) z + la21e-laz2 + we obtain w(z)=pz + z(z), where #(z)

is analytic in U, (0) p and ]@(z) in U. Now l-p(#(z)-Pz) z. Therefore

z+ Izl.

and

h(z)

I+o+ {[(1-B)(---r-)-1] cos a-i sin a} e-tao z

OZ

Since the image of Izl r under g(z) is a disc and h(z) is a billnear

transformation, then
zf’(z)

zf’(z) f(z) is subordinate to (hog) (z). That is, the image of

zl r under f(. is contained in the image of Izl r under (hog)(z).

Equality in (2.1) can be attained by a function

f(z) z(1-2poz+Oz 2)
.1+o. a
-(-) (l-8)co sae

-i

(2.4)



iI M.K. AOUF

-iz2+.z + p(l+o)(l-B)cosa e

hence

-is
z f." (z,)= l-2po, LZ+Z2--(I +0) (I--8)C0 sa e z(z-p)

f(z) l-2p oz + oz2

+ o -(l+o)(1-B)cos a e
+o

z(z-p)
where igpOz

Since p I, 0 O < I, II < for z U.

This shows that

la zf’(z)= cosf(z)

1+o+ [-(--T-)(-)] o(z)

+ o(z) + i sin

and

ia zf" (z)
e f(z) i sin-Bcos -$(z)_

(1-S)cos +o(z)

9(z)Then it is easy to show that ,II ’ 0(’’) MI < M o" - Thus f F (a,B,M).p

Substituting @
6( 0 eis)
o -ode t)

where 6 r(.r+p) in (2.5), we find that
l+rp

zf" (z) WoI=P’ where Wo and po are given by (2.2) and (2.3).

This completes the proof of the lemma.

REMARK I.

(I) If p-I and 8=0 in Lemma I, we obtain a result of Kulshrestha [2].

(ll) If M -(R)(o=I) in Lemma I, we obtain a result of Umarani [3].

(ill)If a=0 and M--(o=I) in Lemma I, we obtain a result of McCarty [6].

THEOREM I. If f(z) e F (a,B.M) > then f(z) is y-spiralp
< ry, where ry is the smallest positive root of the equation

cos Y + p [2 cos Y (l+o)(l-8)cosa]r +

2 2[p cos Y + cp
2 -(I + o)(1-6)cos a(l+ p2)] r

+p [2c-(l+o)(l-8)cosa]r
3 + cr4=O, (2.6)
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.1+o
where c cos(Y-2a) + [(I-B)(----)-2] cos a cos(Y-a). The result is sharp.

PROOF. Let f(z) F (a,8,M), M > I, then by the above Lemma, we have
P

zf’(z)

iy zf" (z) iy
Hence Re e Re e w p

f(z) o o

-1+o
cos Y (l+pr)2+Re {[(I-8)(---)-I] cosa-i sin a} el(Y-a) r2(r+p)
-( +o) 1-8 )co sar( +p r) (r+p)

(I r2)(I + 2pr + r2)

.1+o-
cos Y(l+pr)2+ {cos(Y-2a) + [(I-8)(---)-2] cos a cos (y-a)}r2(r+p)

[-(1+o)(1-8)cosa r(1+pr)(r+p)

(I r2) (I + 2pr + r2)
(2.7)

f(z) is Y-splral if the R.H.S. of (2.7) is positive. Hence f(z) is Y-splral for

Izl < ry where ry is the smallest positive root of the equation

cos Y (l+pr) 2 +{cos(Y-2a)+ [(1-8)(I--+o)-2] cosa cos(Y-a)}, r2(r+p) 2

-(1+o)(1-8)cosa r(l+pr)(r+p) 0.

Simplifying the above equation, we obtain (2.6).

If YffiO in the above theorem, we obtain the radius of starllkeness of the class

F
p

COROLLARY I. f(z) e F (a,8,H), H > I, is starllke for Izl ( r where r
p o o

is the least positive root of the equation

l+p [2-(l+o)(1-8)cosa]r +

()(I-8) cos a [cos ap2 o (l+p2)]r2+

p[2c-(l+o)(l-8)cos a] r3+cr4 O,

.1+o 2
where c (----)(I-8) cos a -I.

If p=l, Y=0 and 8--0 in Theorem I, we obtain a result of Kulshrestha [2].

COROLLARY 2. f(z) F H > I, is starllke for Izl < to, where ra,M’ o
least positive root of the equation

(2.8)

is the

l-(l+o)cos a r+[t----)cos2a- I] r2=O.
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REMARK 2.

(i) If H (=1) in Theorem 1, we obtain a result of Umarani [3].

(ii) If p=l and H (=1) in Theorem 1, we obtain a result of Libera [4] and

Umaranl 5].

(iii) If p=l, =0, Y=0 and H (o-l) in Theorem 1, we obtain a result of

Robertson [7 ].

Since g(z) G (,B,M) if and only if zg*(g) Fp(U,,M)e obtain from Theorem I,

i(TEEOREM 2. If g(z) (,,H), H) I, then Re e /
g’(z)"

) 0 for

Iz ( where is the least positive root of equation (2.6).rT
The result is sharp.

If =0 in Theorem 2, we obtain the radius of convexity of the class
p

COROLLARY 3. If g(z) G (,,M), M > 1, then the radius of convexity of g(z) is
P

the least positive root of equation (2.8).

[31

REMA 3.

For Ms (o=I) in Theorem 2, and Corollary 3, we obtain a results of Umarani

(ll) :f p-I and 6=0 in Corollary 3, we obtain a result of Kulshrestha [2].

(ill)For p=l and M (=1), Theorem 2, generallzes the result of Umaranl [5].
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