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ABSTRACT. Consider the system of equations

t
x(t) = £(t) + [  k(t,s)x(s)ds, ¢}

and

x(t) = f(t) + ft k(t,s)g(s,x(s))ds. (2)
- ®
Existence of continuous periodic solutions of (1) 1is shown using the resolvent
function of the kernel k. Some important properties of the resolvent function
including its uniqueness are obtained in the process. In obtaining periodic solutions
of (1) it is necessary that the resolvent of k is integrable in some sense. For a
scalar convolution kernel k some explicit conditions are derived to determine whether
or not the resolvent of k is integrable. Finally, the existence and uniqueness of
continuous periodic solutions of (1) and (2) are obtained using the contraction

mapping principle as the basic tool.
KEYWORDS AND PHRASES. Volterra integral equation, periodic solution, resolvent,

integrability of resolvent, limit equation.
1980 AMS SUBJECT CLASSIFICATION CODES. 45D05, 34Al10.

1. INTRODUCTION.

In this paper we study the existence and uniqueness of periodic solutions of the

integral equations
t
x(t) = £(t) + [ k(t,s)x(s)ds, -=<tl= (1.1)
- 00
and

t
x(t) = £(t) + | k(t,s)g(s,x(s))ds, -=tl=, (1.2)
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where x, g and f are vectors in Rn, k is an n by n matrix function with elements in
R, and R" is the vector space of n-dimensional column vectors. We list our basic
assumptions in Section 2. The results and their proofs are presented in Sections 3, 4
and 5.

In Section 3 we present two basic results, Theorems 1 and 2, which are used in
Theorem 3 of Section 4 to obtain the existence of a continuous periodic solution of
(1.1). Theorem 1 deals with the resolvent kernel associated with the Volterra

equation
t +
y(t) = £(t) + [ k(t,s)y(s)ds, ¢t € R =[0, =), (1.3)
0

In Theorem 2 we obtain (l.1) as a limit equation of (1.3). The resolvent equation

corresponding to (1.3) is
t
r(t,s) = -k(t,s) +f k(t,u)r(u,s)du, O0<s<t, (1.4)
)

and 1its solution r(t,s) is called the resolvent kernel. The importance of the

resolvent derives from the fact that the solution y(t) of (1.3) is given by
t
y(t) = £(t) - [ r(t,s)f(s)ds, t>0. (1.5)
0

The existence of continuous r(t,s) as a solution of (l.4) is a known result (see [I1,
Chapter IV, Theorem 3.1]). In Theorem 1 we prove the uniqueness of r(t,s) which is
used to establish an important property, (4.4), of r(t,s). We use (4.4) together with
(1.6) and other properties derived in Lemmas 2 and 3 in obtaining periodic solutions
of (l.1). Notice that all the properties of the resolvent function derived in this
paper 1including the integrability properties obtained in Theorem 4 are significant
results by themselves.

We assume that r(t,s) is integrable in the sense that

sup Jt Je(t,8)|ds < Y <= . (1.6)

t20 0
Some results regarding the property (1.6) are available in [2,3]. 1In case k(t,s)=a(t-
8) 1s of convolution type for which the resolvent r(t,s)=b(t-s) is also of convolution
type, it can be verified that if both a(t) and b(t) are of class Ll(R+) then all the
results of Section 4 hold (Remark 2). A necessary and sufficient condition for b(t)
to be of class Ll(R+) was obtained by Paley and Wiener [4] in the following result:

THEOREM O. Suppose a(t) is in the class Ll(k+). Then the resolvent b(t) is in

the class LI(R+) if and only if the determinant

det(I - | e 2%a(t)de) # 0 (1.7)
0

for all complex number z satisfying Re z 2 O.
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The integrability of b(t) (i.e. b(t) is in the class LI(R+)) is also studied in
[5-9]. Analyzing the transcendental relation (l.7) we derive in Theorem 4 a few

explicit conditions regarding the integrability of b(t).

In Section 5 we use the familiar contraction mapping principle to show the
existence and uniqueness of periodic solutions of (l.1) and (1.2). We obtain these

results in Theorems 5 and 6.

Some results related but different from the results of the present paper on

periodic solutions are available in [10-17].

2. UNDERLYING ASSUMPTIONS.

For a vector x in Rn, let |x| denote a norm of x equivalent to the Euclidean
norme For any n by n matrix J, let |J|={|Jx|: |x|<l} be the matrix norm which

corresponds to the vector norm :x’.

Throughout this paper we make the following assumptions of f, k, and g:
(Al) f(t) is continuous and T-periodic on R for some T > 0;

(A2) k(t,s) is continuous in (t,s) for = °<s<tl®, k(t,s)=0 for sdDt;
(A3) k(t+T,s+T)=k(t,s) for -=<s<tl>;

(A4) there exists a constant B > 0 such that

t
sup f 'k(t,s)lds < B;
t20 0
(A5) for each €>0 there exists a 6>0 such that whenever 'h'<6 then

t t+h
J |(e+h,s)-k(t,s) |ds + [ Jk(t+h,s)|ds < €
0 t

for all t>0; (Note that the second integral becomes zero for h<{0 since k(t,s)=0 for
s>t).

(A6) g(t,x) 1is defined on Ran, for each x in R" the function g(t,x) 1is T-
periodic in t, and g(t,0)=0 for all -=(t{x;

(A7) for each >0, there exists an n>0 such that
|g(t,0)-g(e,y)| < a|x-y]
uniformly for -2<t{® whenever |x|, |y|‘n-
It may seem that (A2)-(A4) possibly imply (A5). To see that (A5) is independent
of (A2)-(A4), consider the following example suggested by C.E. Langenhop: Let
$(s)=0 1f 's|>T/2, $(s)>0 if Is'(T/Z and let ¢(s) be continuous on R. For

—2{g{® and 0<t<{T define

K(t,s) = (1+£/T)¢(s-t+T)+¢(s=T2/ (t=T)).
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Now, extend the definition of k using the relation k(t#T,s+T)=k(t,s). Note that
k(t,s)>0. It can be shown that (i) k(t,s) is continuous for =-={s<t{=® with
t
k(T,s)=2¢(s), (ii) there exists a constant B8>0 such that f k(t,s)ds<B for all
0

t
t>0, and (iii) [ k(t,s)ds is not uniformly continuous on R*.  The definition of
0
k(t,s) along with (i) and (ii) show that k(t,s) satisfies (A2)-(A4). However, k(t,s)

t
does not satisfy (A5) since (A5) would imply [ k(t,s)ds is uniformly continuous on
+ 0

R .

3. TWO BASIC RESULTS.

Although the existence of a continuous solution r(t,s) of (1.4) is a known result
the uniqueness of such r(t,s) does not seem to be explicitly shown anywhere. In
Theorem 1 we establish the uniqueness of r(t,s).

‘THEOREM 1. If k(t,s) is continuous on 0<s<t{=, then there exists a unique
continuous solution r(t,s) of (l.4) on 0<g<t=,
PROOF. We only prove the uniqueness of r(t,s). By way of contradiction, suppose
there are two solutions r(t,s) and w(t,s) of (1.4) with
r(t,s)*w(t,s) for all 0<g<t<=,

Then for any continuous q we have
t
y(t) = q(t) - [ r(t,s)q(s)ds, ¢30,
0
and
t
y(t) = q(t) - [ w(t,s)q(s)ds, t>0.
0
as the unique solution of the Volterra integral equation
t
y(t) = q(t) + [ k(t,s)y(s)ds, t>0.
0

The uniqueness of the solution y(t) is a well known result (see e.g., (18, Theorem
2.1.1]). Thus we have

t
[ u(t,s)q(s)ds = 0, (3.1)
0
where  U(t,s)=r(t,s)-w(t,s). Since r(t,s)#w(t,s) for all 0<s<t{=, there 1is a
‘ -
(tl’sl) with 0<sl cl and an element LT such that ulm(tl’sl) a#0 where
(uij)-U; 1€i,3j<n, Clearly, we may assume a > O. Substituting tl for t in the

Lth row of (3.1) we obtain
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31

£ (ull (tl,s)ql(s) +eoot uzm(tl,s)qm(s) +ooo + uln(tl,s)qn(s))ds=0. (3.2)
Since ugm(t,s) is continuous in (t,s) and uzm(tl,sl)-a>0, there exists an

€>0 with e(sl such that ulm(tl,s)>0 for 0(sl-e<s<sl+e. Let us choose a continuous

function q such that qm(sl)=1, qm(s)>0, qm(s)-O for 0<s<sl—e, s>sl+6, and qj(s)EO
for j=1,2,¢¢s,n, j*¥m. Then it follows from the choice of q and from the property of

Upn that the left side of (3.2) is nonzero, which is a contradiction.
LEMMA 1. Suppose k(t,s) satisfies (A2) and (A3). Then (A4) holds if and only if
t
sup f_“ 'k(t,s)'ds < B (3.3)
ol =
holds.
PROOF. Trivially, (3.3) implies (A4). To see that (A4) implies (3.3), consider
an arbitrary t in R. Then choose a positive integer ng such that
t+nT>0 for all n>n0. It follows from (A3) that
t t+nT
f—nT |k(t,s)|ds = IO n lk(t+nT,s)|ds <8

for all n>n0. This implies (3.3).

By virtue of Lemma ! the integrals involved in Theorem 2 and in subsequent
results of this paper are defined and finite.

THEOREM 2. Suppose (Al)-(A5) hold. 1If y(t) is the continuous bounded solution of
(1.3) on R+, then there exists a sequence of integers n,+ ® as j+ ® such that

y(t+n T)*x(t), a continuous solution of (l.1) on R, as j*=, and the convergence is
uniform on compact subsets of R.

PROOF. Since y(t) is a continuous and bounded function on R+, it follows from
(A4) and (AS) that fg k(t,s)y(s)ds is bounded and uniformly continuous on R+.
Thus, from (1.3) and (Al) we see that the function y(t) is bounded and uniformly
continuous on R+. Hence, for any a>0 the sequence {y(t+nT), nT>a, neN} of
translated functions is equicontinuous and uniformly bounded on -a<t{®, where N
denotes the set of positive integers. Therefore, by Ascoli's theorem there exists a

sequence of integers nJ and a continuous function x(t) such that
1

T)-x(t)| < 3

max ’y(t+n
-3<e<y

This proves that y(t+n

3

T)*x(t) as j**, and the convergence is uniform in t on each

h]

compact subset of R.

Let L be a bound for |x(s)| when ~®{s{x, For any —={t{=, if t+an>0 with j)lt'

then a few calculations yield

t t
lf_u k(t,s) x(s)ds - f

an k(t,s)y(s+an)ds'
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<2u 73 Jrce,s)|ds + % [; [k(t,8)|ds.

This last expression tends to zero as j*=. Therefore, taking the limit in the

sequence of translated equations (obtained from (1.3))

y(t+an) = f(t) + ffan k(t,s)y(s+an)ds

as j*, we get (l.1) as required to show that x(t) satisfies (l.1) on R.

4. PERIODIC SOLUTIONS USING THE RESOLVENT KERNEL.

LEMMA 2. If k(t,s) satisfies (A2) and (A3) then r(t,s) satisfies the following

properties:

r(t,s) is continuous for O0<s<t{=, r(t,s) = 0 for sdt, (4.1)
and

r(t+T,s+T) = r(t,s) for 0<s&t<=, (4.2)

PROOF. It follows from Theorem 1 that (A2) implies (4.1). Substituting t+T for t
and s+T for s in (l.4), and then using (A3) we obtain

t
v(t,s) = -k(t,s) + f k(t,u)v(u,s)du,
s

where v(t,s)=r(t+T,s+T). So, v(t,s) satisfies (1.4) for 0<s<tl=, Now, the property
(4.2) follows from the uniqueness property of Theorem 1.

LEMMA 3. Suppose k(t,s) satisfies (A2)-(A5). Suppose also r(t,s) satisfies
(1.6). Then for each €>0 there exists a >0 such that

t t+h
f Ir(t+h,s) - r(t,s)‘ds + f 'r(t+h,s)|ds <€ (4.3)
0 t

for all t>0 whenever |n|<&.

The proof of Lemma 3 involves the use of (l.4) and the application of Fubini's

theorem. We omit its proof because a parallel result is available in [2, Theorem 2].

In Lemma 2 we proved that r satisfies the relation r(t+T,s+T)=r(t,s) for
0<s<t<™, Let us extend this r using the relation r(t,s)=r(t+nT,s+nT) for -=<s<t<0
where n is a positive integer and large enough so that t+nT?s+nT>0. This extended r

is now defined and continuous for =<¢g<t{®, Also, r(t,s) satisfies the relation

r(t+T, s+T) = r(t,s) for -» < s< t < =, (4.4)
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It now follows from Lemma 1 that (1.6) holds if and only if

sup ftﬂ lr(t,s)'ds <y
—oltd®

holds. Thus, the integrals involved in Theorem 3 make sense.

THEOREM 3. Suppose (Al)-(A5) hold. Suppose also r(t,s) satisfies (l1.6). Then
(l.1) has a continuous periodic solution x(t) on R. (We use the term "Periodic
solution" to refer to T-periodic solution).

PROOF. It follows from (1.5), (1.6) and (Al) that the solution y(t) of (1.3) is
bounded on R+. Again, (Al) and Lemma 3 imply that f; r(t,s)f(s)ds is uniformly
continuous on R+. So, by Theorem 2 there exists a sequence of integers n_, such

3

that y(t+an)*x(t), a continuous solution of (l.1) on R, as j*=.

Let M be a bound for |£(s)| when -=(s<=. For —=(td=, if t+n,T>0 with >|t| then

|15, et 0)ECs)ds = £ e(e,0)E(s)as| < 2 [T |eCe,0)|ds,
h]

which tends to zero as j*®. Taking the limit in the sequence of translated equations
(obtained from (1.5))

y(e+n,D) = £(8) - ffan r(t,s)f(s)ds
as j**, we obtain
x(t) = £(t) - [5_ r(t,s)E(s)ds. (4.5)

If follows from (Al) and (4.4) that x(t) in (4.5) is T-periodic.
REMARK 1. In the proof of Theorem 3 one may notice that it is only the continuity
instead of uniform continuity of fgr(t,s)f(s)ds that is needed. This continuity

could be obtained from the condition

lin [ [§ |r(c+h,8) -r(e,0)[das + [ |e(teh,e)|ds 1 = 0 (4.6)
0

for each t 2 0,

which is relatively weaker version of condition (4.3). Note that for condition (4.6)
to hold, assumption (A5) could be replaced by the following property:

1im [ [ Jk(e+h,8) - k(e,s)|ds + [E[i(een,0)|as 1 = 0 (4.7
t
w0
for each t > 0.

However, to prove Theorem 2 which is used in Theorem 3 we need (AS) so that

t
[ x(t,s)y(s)ds can be uniformly continuous. The uniform continuity of
0
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t
f k(t,s)y(s)ds is needed for the equicontinuity of {y(t+nT), nTD>a, neN} on
0
—as g™,

REMARK 2. If k(t,s)= a(t-s) with a(t) in the class Ll(R+) then a(t) satisfies
(A3) and (A5). Similarly, if the resolvent b(t) of a(t) is of class Ll(R+) then b(t)
satisfies (4.3) and (4.4). Therefore, the results of Theorems 2 and 3 include

convolution equations as special cases.

The following are a few coaditions derived from Theorem 0 to determine whether or
not b(t) is of class Ll(R+).

THEOREM 4. Suppose a(t) is a real valued continuous function on R+ with a(t) in
the class LI(R+). Let b(t) be the resolvent of a(t).

(1) 1f f; |aCe)|dt > 1, then b(t) is not tn the class LI(R").
.00 1 +
(11) 1f [, |at)]dt < 1, then b(t) 1s in the class L (R).

(111) Suppose a(t) does not change its sign on RV . o1 -1« ]; a(t)de < 1,
+
then b(t) is in the class LI(R ).
PROOF. Since a(t) is a scalar function, the condition (1.7) becomes 1l-a*(z) # 0

for Re z » 0, where
* -
a (z) = f; e zca(t)dt.

let q(z) = l-a*(z).

PROOF of (i). It is sufficient to prove that there exists at least one root of
q(z) in the closed right half plane. If ]; a(t)dt=1 then q(0) = l—a*(O) = 0. So,
z=0 is a root of q(z). If f; a(t)dt > 1 then q(0) < 0. Considering y=0, x > O where
x+iy=z, we obtain a*(z)-a*(x) which tends to zero as x * ®. Thus, q(x)= l-a*(x)

+ 1 as x * ®, Since q(x) is a real valued continuous function on R+, q(0) < 0,
and q(x) > 1 as x * ®, it follows that there is a real positive root of q(x) on R+.

PROOF of (ii). From the hypothesis we get |a*(z)| < 1 for Re 2z 2 0. So,

Iq(z)l- ll-a*(z)l > l-|a*(z)| >0 for Re 1z 2 0. Therefore, q(z) has no root z,
Re z 2 0.

PROOF of (iii). We assume that a(t) # O. Otherwise b(t) = 0. Since a(t) does
not change its sign, the condition -1 < f; a(t)dt < 1 is the same as the one in
(ii). So, we consider only the case f;a(t)dt- -1.

Let ¢(t) = -a(t). Clearly, ¢(t) >0 for all t >0 and [j4(t)dt=1. Now
* *
q(z) = 1-a (2) = 1+¢ (2)

=1+ [; e *feos yt ¢(t)dt + 1 f; e *Ysin yt ¢(t)de.



PERIODIC SOLUTIONS OF VOLTERRA INTEGRAL EQUATIONS 789

Thus, to get q(z)=0 one rust have

1+ f: e—Xtcos yt ¢(t)dt = 0. (4.8)
First we show that for y # 0, x > 0

|fg €™*cos ye a(e)ae| < 1 (4.9)

which contradicts (4.8). The case y=0, x ?» 0 is considered later.

For y # 0 consider the set
+
E={teR: t=arn/y, n=...~2,-1,0,1,2,...}

Clearly, E is a countable subset of R+ and Icos ytltl for t € E. It is easy to see

that there exists a positive t ¢ E, such that ¢(tl) # 0. Otherwise ¢(t)=0 for all
t € EC, the complement of E with respect to R+. This would imply ¢(t) = O on R+,

a contradiction to f;¢(t)dt-l. Thus, there exists a tl>0 such that O(tl) > 0 and

|cos ytll < 1. Let us choose a & > 0 such that t. -= 8§ > 0 and |cos yt| <1 for

1

't-tl' < &, Suppose Y= maxlcos yt I for 't-tll <€ 6. Note that Y exists and

Y < 1. Also,
cl+6
[, _ #(t)de = u > 0.
1
Since Y <1 and u > 0 then Yu < u. Hence,
tl-G t1+6 -
f;'cos yt| #(t)de < Io #(t)de + Itl-ﬁ Y¢(t)de + ]t1+6¢(:)dt

< fge(orae = 1.

This shows that the condition (4.9) holds.

For y=0, x > 0 the function q(z) = q(x) » 1. From (1) we know that
f;e-Xt¢(t)dt tends to zero as x * ©®. This shows that q(x) *+ 1 as x * ©®. So, q(z)

has no root for y=0, x > 0.

5. PERIODIC SOLUTIONS USING THE CONTRACTION MAPPING PRINCIPLE.

Let X = {x(t): R*R", x(t) is continuous and bounded on R} . For x in X let
"x" = sup {|x(t)|: -® <t < ®}, Then (X, l'.l') is a Banach space. For simplicity
we write X instead of (X,[[.||). Let B ={x in X: x(&+T)=x(t) for all —= < t < =}.
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Then PT is also a Banach space.

LEMMA 4. Suppose (Al) - (A4) hold. 1If x(t) is a continuous bounded solution of
(1.1) on R then x(t+T) is also a continuous bounded solution of (l.1) on R.
Similarly, if (Al) - (A4), and (Ab) hold then x(t+T) is a continuous bounded solution

of (1.2) on R whenever x(t) is a continuous bounded solution of (1.2) on R.

The proof of Lemma 4 is easy and is left for the readers to verify.
LEMMA 5. If k(t,s) satisfies (A2) - (AS5) then for each € > O there exists a
§ > 0 such that

£ |k(t+h,s)-k(t,s) |ds + [EMk(t+h,s)|ds < € (5.1)
-0 t

for all - < t { ® whenever 'h' < 6.

The arguments of the proof of Lemma 1 carry over to the proof of Lemma 5.

THEOREM 5. If (Al) - (A5) hold an if B of (A4) {s less than 1 then there exists
a unique continuous periodic solution x(t) of (l.1) on R. Moreover, x(t) is the only
continuous bounded solution on R.

PROOF. Since B < 1, it follows from Lemma 1 that

sup fiw Ik(t,s)|ds <B< 1.
=l tL®

For any ¢ in X define a map A on X by
ap(t) = £(t) + [5_ k(t,8)0(s)ds, (5.2)

where X is the Banach space introduced at the beginning of this section. Since

¢(s8) is a continuous and bounded function on R, it follows from Lemma 5 that

ffa k(t,s)¢(s)ds is continuous (in fact uniformly continuous) and bounded on R. Thus,
the function A¢(t) in (5.2) is continuous and bounded on R. This shows that A¢ is
in X. So, A maps from the Banach space X into itself.

For 9,0 in X one readily sees that ||A¢-Ay|| < 8 ||¢-v||. stnce 8 <1,
mapping A is a strict contraction. This proves that there exists a unique continuous

bounded solution x(t) of (1.1) on R.

Using the argument of Burton [15] we see that x is T-periodic. Indeed, from
Lemma 4 we know that x(t+T) is also a continuous bounded solution of (l.1) on R.
Since x(t) is the only continuous bounded solution of (l1.1) on R, it follows that
x(t)=x(t+T) for all - { t < ®, This completes the proof of Theorem 5.

REMARK. From the proof of Theorem 5 it may appear that the existence and
uniqueness of a continuous periodic solution x(t) of (l.1) on R could be obtained by
defining the map A from PT into itself instead of X into itself where PT is the
Banach space introduced at the beginning of this section. 1In that case the use of
Lemma 4 could be avoided. However, this would not prove that the solution x(t) is the

only continuous bounded solution on R.
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THEOREM 6. Suppose (Al) - (A7) hold. Consider B of (A4). For any
a > 0 with aB < 1 choose n of (A7). Then for each f satisfying 'f(t)l < (1-aB) n
as well as assumption (Al) there exists a unique continuous periodic solution x(t) of
(1.2) with
solution of (1.2) with 'x(t)‘ < non R.

PROOF. Fix a > O with aB < 1. Then from (A7) it follows that there exists an
n > 0 such that 'g(t,x)' < u'x' uniformly in - < t < ® whenever 'xl‘n.
Choose f satisfying (Al) and the condition 'f(t)' < (1-aB)n for all -= <t < =,

x(t)‘ < n on R. Moreover, the function x(t) is the only continuous

Consider the set.

s = {¢(t): R > R", ¢(t) is continuous, |¢(t)| < n for all -= < t < ®},
For ¢ in S, define a map A on S by

Ad(e) = £(t) + 5 K(t,s)g(s, o(s))ds. (5.3)

It follows from (A7) and Lemma 5 that fimk(t,s)g(s,o(s))ds is continuous on R.
Therefore, the function A¢(t) in (5.3) is continuous on R. Again,
|A¢(t)| < (1-aB)n+aBn=n. So, A maps from S into itself. Finally, for ¢,y in S,
HA¢—AW” < aB”tb-\P”. Since aB < 1, mapping A is a strict contraction. This proves
that there exists a unique continuous solution x(t) of (1.2) with |x(t)' < non R.
It follows from Lemma 4 that the function x(t+T) is also a continuous solution of
(1.2) with |x(t+T)' < n on R. This shows that x(t)=x(t+T) for all t in R as required.
REMARK. Theorems 5 and 6 hold even if we replace assumption (A5) by (4.7).
Condition (4.7) will provide the required continuity of A¢(t) in (5.2) and (5.3).

ACKNOWLEDGMENTS

This work is part of the author's Ph.D. dissertation written under the direction
of Professor T.A. Burton. The author gratefully acknowledges Professor Burton's
guidance throughout this work.

REFERENCES

1. MILLER, R.K. Nonlinear Volterra Integral Equations, Benjamin, Menlo Park,
California, 1971.

2. GRIPENBERG, G. On the resolvents of nonconvolution Volterra kernels,
Funkcialaj Ekvacioj, 23 (1980), 83-95.

3. STRAUSS, A. On a perturbed volterra integral equation, J. Math. Anal. Appl., 30
(1970), 564-575.

4. PALEY, R.E.A.C. and WIENER, N. Fourier transforms in the complex domain, Amer.
Math. Soce. Colloquium Publications, 1934.

5. GRIPENBERG, G. On positive nonincreasing resolvents of Volterra equations, Je
Differential Equations, 30 (1978), 380-390.




792

6.

10.

11.

12.

134

14.

15.

16.

17.

18.

M.N. ISLAM

GRIPENBERG, G. On the resolvents of Volterra equations with nonincreasing
kernels, J. Math. Anal. Appl., 76 (1980), 134-145.

GRIPENBERG, G. On the asymptotic behavior of resolvents of Volterra equations,
SIAM J. Math. Anal., 11 (1980), 654-662.

GROSSMAN, S.I. Integrability of resolvents of certain Volterra integral
equations, J. Math. Anal. Appl., 48 (1974), 785-793.

MILLER, R.K. On Volterra integral equations with nonnegative integrable
resolvents, J. Math. Anal. Appl., 22 (1968), 319-340.

LEITMAN, M.J. and MIZEL, V.J. Asymptotic stability and the periodic solutions
of x(t) + [* a(t-s)g(s,x(s))ds = £(t), J. Math. Anal. Appl., 66 (1978),
606-625.

ISLAM, M.N. Periodic solutions of nonlinear integral equations, Annali di Mat.

Pura ed Appl., to appear.

ELOE, P.W. and ISLAM, M.N. Periodic solutions of nonlinear integral equations

with infinite memory, Applicable Analysis, to appear.

BURTON, T.A., Stability and Periodic Solutions of Ordinary and Functional
Differential Equations, Mathematics in Science and Engineering , Vol. 178,
Academic Press, New York, 1985.

BURTON, T.A. Periodicity and limiting equations in Volterra systems, Boll. Un.
Mat. Ital. Serie VI, Vol. IV-C, N.l1 (1985), 31-39.

BURTON, T.A. Periodic solutions of linear Volterra equations, Funkcialaj
Ekvacioj, 27 (1984), 229-253.

LANGENHOP, C.E. Periodic and almost periodic solutions of Volterra integral
differential equations with infinite memory, J. Differential Equations, 58
(1985), 391-403.

ARINO, O. and HADDOXK, J. Estimates for periodic solutions of diferential
equations with inifinite delay, Notices Amer. Math. Soc. (29) 5 (1984), 57.

BURTON, T.A. Volterra integral and differential equations, Mathematics in

Science and Engineering, Vol. 167, Academic Press, New York, 1983.



Mathematical Problems in Engineering

Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years
for one-, two-, and three-dimensional space. Additionally,
such dynamical systems can exhibit a very important and still
unexplained phenomenon, called as the Fermi acceleration
phenomenon. Basically, the phenomenon of Fermi accelera-
tion (FA) is a process in which a classical particle can acquire
unbounded energy from collisions with a heavy moving wall.
This phenomenon was originally proposed by Enrico Fermi
in 1949 as a possible explanation of the origin of the large
energies of the cosmic particles. His original model was
then modified and considered under different approaches
and using many versions. Moreover, applications of FA
have been of a large broad interest in many different fields
of science including plasma physics, astrophysics, atomic
physics, optics, and time-dependent billiard problems and
they are useful for controlling chaos in Engineering and
dynamical systems exhibiting chaos (both conservative and
dissipative chaos).

We intend to publish in this special issue papers reporting
research on time-dependent billiards. The topic includes
both conservative and dissipative dynamics. Papers dis-
cussing dynamical properties, statistical and mathematical
results, stability investigation of the phase space structure,
the phenomenon of Fermi acceleration, conditions for
having suppression of Fermi acceleration, and computational
and numerical methods for exploring these structures and
applications are welcome.

To be acceptable for publication in the special issue of
Mathematical Problems in Engineering, papers must make
significant, original, and correct contributions to one or
more of the topics above mentioned. Mathematical papers
regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

December 1, 2008
March 1, 2009

‘ Manuscript Due

‘ First Round of Reviews

June 1, 2009

‘ Publication Date

Guest Editors

Edson Denis Leonel, Departamento de Estatistica,
Matemadtica Aplicada e Computagdo, Instituto de
Geociéncias e Ciéncias Exatas, Universidade Estadual
Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro,
SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State
University, Vorob’evy Gory, Moscow 119992, Russia;
loskutov@chaos.phys.msu.ru

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1Call for Papers-4pt
	Guest Editors

