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ABSTRACT. The main intent in this paper is to find triples of Rational
Pythagorean Triangles (abbr. RPT) having equal areas. A new method of
solving a+ab+b2=c2 is to set a=y-1, b=y+1, yeN- 10,1} and get
Pell's equation c2 - 3y2 =1. To solve a‘2 - ab + b‘2 = 02, we set

a =% (y+1),b=y-1, y>2, yeN and get a corresponding Pell's equa-
tion. The infinite number of solutions in Pell's equation gives rise

2+ab+b°=c?. From this fact the

to an infinity of solutions to a
following theorems are proved.
Theorem 1 Let 02 = a2 +ab + b2, a+b>c>b>a>0, then the three RPT-s
formed by (c,a), (c,b), (a+b,c) have the same area S=abc (b+a) and
there are infinitely many such triples of RPT.

Theorem 2 Let 02 = 32 -ab + b2, b>c>a>0, then the three RPT-s formed
by (b,c), (c,a), (c,b-a) have the same area S=abc (b-a) and there are

infinitely many such triples of RPT.

KEY WORDS AND PHRASES. Rational Pythagorean Triangles (abbr. RPT),
Perimeter of the RPT, Pell's (Euler's) equation, Fibonacci sequence.
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1. DEFINITIONS AND PREVIOUS RESULTS. In one of his papers Bernstein
[1] returned to the Grecian classical mathematics, and investigated
primitive rational Pythagorean Triangles concerning mainly k-tuples of

them having equal perimeters 2P.
In this paper we deal with rational integral right triangles
having equal areas and give the following
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DEFINITION A rational triangle with sides a,b,c which are represented
by a triple (a,b,c) of natural numbers will be called a Rational
Pythagorean Triangle, if and only if

there exists (u,v),(u,v)e N2 - {(0,0)},

u > v, such that

a = u2-v2, b= 2uv, c = u2+v2, (1.1)

a,b,c ¢N - {0} = 1,2,...

We abbreviate Rational Pythagorean Triangles by RPT and we write
RPT(u,v) for RPT formed by (u,v). We also write S(u,v) for the area
and P(u,v) for half perimeter of the RPT(u,v)

D= RPT(u,v):S(u,v) = %ab = uv(uz- v2) (1.2)
P(u,v) = -]é-(a+b+c) = u(u+v)

The main intent in this paper is to find triplets of RPT-s having
equal areas.

The first who asked this question was the great Diophantus [3]
and Dickson [2] enlarged the topic.

Let D be a triangle with integral sides and 6 = 120° one of its
angles. Then if c is the side opposite 6 and a,b the two adjacent

. A 2 .2 .2 A
sides of C, we have, by c“=a“ +b~-2ab cos C
a+ab+b? = c2 1 (1.3)
a+b>c>b>a; a,b,c €N - {0} J
and if C = 60° we have
a-ab+b2=c? } (1.4)
b>c>a>0; a,b,ceN - {0}].

The totality of solutions to aziab +b2= 02 is given in parameter form
by Hasse [6]. The new idea in this paper rests in the fact that (1.3)
and (1.4) are connected with the areas of the triangles. In order to
find a formula to derive explicitly the infinity of RPT-s of equal

area, since we cannot use Hasse's [6] parametric form, we will give a
new method to prove that the equations a2 +ab +b2= c2 have infinitely
many solutions and state some of them explicitly.

The new method will bring us to the solution of a Pell's equation.
The infinite number of solutions of Pell's equation [4] will give rise

to an infinity of solutions to a2 +ab + b2 = c2.

2. PELL'S (EULER'S) EQUATION: u?-3v,? =1;n=0,1,.... In the
sequel we shall permanently have to make use of Pell's equation
2 2

w“-3v,“ =1, n=0,1,... . (2.1)
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This could be solved by continued fraction with v3+1 = [2,1], but
we use a simpler method since a solution of (2.1) is easily found.
Neglecting (uo,vo) = (1,0) we have

(ul’vl) = (291)9 (2.2)
hence using [5]
Un+Vn‘/3 = (2 + ‘/3)1’1, n=0’1,"' . (2‘3)
From (2.3) we deduce
3] ~
w o= 2 (B 2235l noo,,...
1=§’ r (2.4)
[251]
vo= 2 (GR2Rst o1
i=0 J
From (2.4) we obtain
z . 1
uyy = 2 (31 22m2isl n_q 5.
1=0
m-1 . ’
Vo = Zo (L) 22 =2sl, poq 0, (2.5)
1=
(uO’VO) = (1,0) /
m N
2m+1 2m+1-2i,1,
u2m+1=lz=o ( 2i ) 2 3 ’ m=0,l,...
o ’ (2.6)
2msly ,2m-2i,i.
V.2m+1=lz=o (2141) 277755 m=0udheee ]

In U, all summands are even but the last which is 3m; in Vom all
summands are even, hence
U.2m = 2F +1; (2.7)
Von = 2G; F,G € N
In Uil all suﬁmands are even; in Vomsl all summands are even but the
last which is 3 ; hence
Uop,y = 255 (2.7a)
Vomsl = 2T +1; S,T € N.
We have the initial values
(uoyvo) = (190); (ul’vl) = (2’1); (uzyvz) = (7’4)
(u39V3) = (26;15); (uh’vh) = (97,56); (US,V5) = (362,209)r(2.8)
(ug,vg) = (1351,780); (us,v,) = (5092,2911).
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3. A SOLUTION OF (1.3) a+ab+b>=c>. Here we shall give infinitely

many solutions of (1.3) in explicit form, though they won't constitute
all solutions of (1.3). Let

a2+ab+b2 = 02; a+b>c>b>a>0,
a,b,c € N - {0}. (3.1)
We set
a=y-1; b=y+1l; yeN- {0}. (3.2)
Substituting the values of a,b from (3.2) in (3.1) we obtain
(y-12+ (3%-1) + (y+1)% = ¢°
or 02-3y2 = 1.
Now we set c = W, V=V, n=1,2,... and we get unz--an2 =1 or

u?-3v2=1 which is (2.1).

The infinite number of solutions u,,V, in Pell's equation (2.1), give

rise to an infinity of solutions to a2 4+ ab +b2 = c2.

THEOREM 1. Let c® = a®+ab+b2, asb>c>b>a>0 then the three RPT-s

formed by (c,a), (c,b), (a+b,c) have the same area S = abc(b+a) and

there are infinitely many such triples of RPT-s.

Proof. To get the example given by Diophantus [3, p. 172] as a

particular case of our formulas we consider (a,b,c)=1. Since we

prefer (a,b,c) =1, though this is not absolutely necessary, we have to

set v even in (2.1), so that a,b are both odd. If Vy, = Vo, We obtain
a=vy -1; b=v2m+l; c=uy i m=1,2,... (3.3)

Using (1.2) and a®+ab+b° = c2 it is easy to show that

S(c,a) =S(c,b) = S(a+b,c) = abc(b+a).
D, = RPI(c,a) = RPT(uyp,Vyp-1);

D, RPT(c,b) = RPT(uZm,v2m+l);

[}

Dy RPT(a+b,c) =RPT(2v2m,u2m),

and following S = abc(b+a) the common area is
S =2 u2mv2m(v22m-l). (3.4)
That there are infinitely many such triples of RPT-s follow from the
infinity of solutions of (2.1).
Choosing m = 1, we have from (2.8)
(uzsvz) = (7,4); uz =7, V2 =4
c=7;a=3b=5 (3.5)
S = 3.5-7-8 = 840
and this is exactly the example given by Diophantus.
If we choose m = 2, we have
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(ul}’vll') = (97,56); u[‘_ = 97; VZI» = 56;
c =97; a =55 b=57. (3.6)
S 55:57-97-112 = 34,058,640.
For RPT(97,55) using (1.2) we have
5(97,55) = 97-55(97°-55°) =
= 55.57.97.112 = S in (3.6).

4. SOLUTION OF (1.4) a®-ab+b%=c°. In this chapter we state more

triples of triangles RPT having the same area. We shall first prove
Let

a®-ab+b%=c%; a,b,c ¢ N-{0}; then (4.1)

b>c>a>0; (a,b,c) =1
In (4.1) we set arbitrarily b> a; then we have

b - ¢c© = a(b-a) > 0; b > c; }
= b(b-a) > 0; ¢c > a;
Thus b>c>a>0, as stated in (4.1). We shall now prove
THEOREM 2. Let c=a’-ab+b%, b>c>a>0. Then the three RPT-s
formed by (b,c), (c,a), (c,b-a) have the same area S, viz.

S = abc(b-a) (4.3)
and there are infinitely many such triples RPT.
Proof. If we set in (1.4) a — -a, we obtain from equation (1.3), the
equation (4.1). But this is only an algebraic formality, since the
RPT formed by (c,-a) makes sense, though from S =abc(a+b) we obtain
(4.4) by substituting -a for a. We also have

(4.2)

[¢]
1
(V)
I

e - (a-b)2-+ab, c> a-b, b-a. (4.4)
Now
D, = RPT(b,c); S(b,c) = % . 2bc(b2-c2) = % Xy
= % + 2bca(b-a) = abc(b-a);
D, = RPI(c,a); S(c,a) = % - 2ca(c®-a®) = % xy
= % - 2cab(b-a) = abc(b-a);
Dy = RPT(c,b-a); S(c,b-a) = § - 2¢(b-a)[c® - (b-a)?] =3 xy

= c(b-a)ab = abc(b-a)
S = S(b,c) = S(c,a) = S(c,b-a) = abc(b-a).

We still have to prove that (4.1) has infinitely many solutions.
We shall give two methods to find these solutions, though these may
not be all infinitely many solutions of (4.1). This was done by Hasse
[6] with algebraic number theory which we shall avoid here, giving
simple methods to solve (4.1) in explicit form.
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In (4.1) we set
b=a+v, v=b-a>O0; (4.5)
we obtain, setting a = b-v,

(b—v)2 - b(b-v) +b2 = &2
b2 - bv+ve - c2 = 0
v - bv - (c2-b2) = 0. (4.6)

From (4.6) we obtain
3 (b4 b+ 4(c-1%) ),

3 (b + vhe? - 362 ). (4.7)

We have, since setting 4e? - 3b2= x° contradicts our condition (a,b,c) =1

v

v

402 _ 3.02 = 1. (4.8)
Thus we have arrived at Pell's equation, setting
2c = uy, b=v,. (4.9)

Thus u, is even, and we must take W, =Us 4 and from (2.7a) we obtain
1
b=v sy C = u H
2m+1’ 1 Z 2m+1, } (L#. 10)
a = b—V=1)—2 (bil).

Since we obtain two values for a, we may have obtained six RPT-s with
equal area. We shall investigate this later. We first take v=%(b+1)

a=%(b-1) =5 (vpy 1 -1) l
. _ 1 .
b= Vou,1 © = 3 Uppup (4.11)
b-a = % (V2m+l‘+1).
Hence, from (4.3), or forming
D1=RP‘1‘(b,c), D2=RPT(c,a), D3=RPT(c,b—a)
1 1 1
S=5(Vopa1 = 1) Vop,1 * 3 Uopey - 3(Vop,y +1)
S=% u2m+1V2m+1(V§m+l -1). (4.12)

We take, for an example m = 1,
(UB’VB) = (26’15)

Uppyy = 265 Vop g =15

S=3 -26-15(15%-1) = 10,920.

The reader should note that since

Vom,1 = 25+1, V5 ;-1 = O(mod 8).

Hence, in (4.12) S is an integer. We now take v = % (b-1) and obtain
from (4.10)
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b =

a = b-v = %(b+1) = §<v2m+l +1) (4.13)

. 1 .
Vomsl? © = T Uopul? l

1

b-a = ?(V2m+1 -1),
and from D4=RPT(b,c), D5=RPT(c,a), D6=RPT(c,b-a). Previously, we
had for v = %(b+l),

1 . _ _1

a = 5(vpp=1)i b=Vop,1s C=F Uppy

b-a = F(v, +1).
Comparing (4.11) with (4.13) we see that

D2 = D6
D3 = D5
D1 = Dh

and thus get the same triple of RTS-s in both cases.

5. SECOND SOLUTION OF c2= a2— ab +b2. We give a second method of

'finding infinitely many solutions of (4.1). We set here

a=3%(y+l); b=y-1; y22; y€N (5.1)

Substituting these values in (4.1), we obtain

(3 (3+1)1% -3 (v3-1) + (y-1)% = ¢?

y2+2y+1-2y2+2+hy2-8y+4

402

3y2—6y+7 = 402
3(y—1)2+l+ - 42
2 2
LI»C - B(Y—l) = ll—. (5-2)

Since from (2.7) y-1 has to be even we can cancel (5.2) by 4 and we
obtain

y-1 = 2v5, ¥ =2V, +1; (5.3)
and with c = U, we obtain

ugm - 3v§m =1

a =35 (2v, +2),

a=vy +1l; b=2v,, C=uy (5.4)

S = abc(b-a) = (v2m+1)2vZm . u2m(v2m—l)

S = -1). (5.5)

2
2u2mv2m(v2m
Comparing (5.5) with (4.12) we may think about the different expressions
for area S; though one is expressed by Uoni1® Vomsel® the other by Uos
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Vom? it is so because we are dealing here with different areas, de-
pending on the values of a,b,c, which are different in each case. For
an example for (5.5) we choose m = 2,

(uy,v,) = (97,56),

= 2:97-56- (56°-1) = 34,058,640.
If we set
a=2m-1, b= 2v2m, c=u, b-a = v2m+1,
ugm - 3V2m =1 (5°6)
then a2 -ab +b2 = c2, S= 2u2mv2m(v§m-l). But we obtain nothing new
since RPT(c,a), RPT(c,b-a) are interchanged with RPT(c,b-a), RPT(c,a).
The author is asking whether two successive Fibonacci numbers
could be solutions a,b of aziab +12 = . The Fibonacci sequence, see
[8] with F)=Fy,=1, F  ,=F,+F ;, n=1,2,... goes 1, 1, 2, 3, 5, 8,
13, 21, 34, 55, 89, 144, ... . Now (FA,F ) = (3,5) is a solution of
the Diophantine example 3 +3 5 4+ 5 7 , and (F5,F6) = (5,8) is a
solution of
52 _ 5.8 482 =72
Here S = abc(b-a) = 5:8-7-3 = 840 whether there are more pairs of
adjacent Fibonacci numbers serving as solutions of a2- ab +b2 = 02
could not be decided generally here.

6. PERIMETERS AND AREAS. As known, P, half the perimeter of a RPT
is a divisor of its area S, since
P = u(u+v), S = u-v(u2-v2) (6.1)
S =P = v(u-v)
where (u,v) forms the RPT. The question arises whether there are other
connections between these two elements. Here we could only prove
THEOREM 3. Let a-ab+b=c?, b>c>a>0, a,b,c € N- {0}. Then the
sum of the three perimeters formed by a,b,c, viz. RPT(b,c), RPT(c,a),
RPT(c,b-a) is the sum of two squares.
Proof. We have
= RPT(b,c): 2P1=X1+y1+zl=b2-»02+2bc+b2+c2

2P, = 2b(b+c);
L 2 .2 2 .2
D2=RPT(c,a): 2P, =X, +y,+2,=c"-a"+2ca+c”+a
=2c(c+a);
. _ _ w2 _ (hoa)? . _a)2
D3=RPT(c,b—a). 2Pz =Xz + Yz +2Z3=C (b~a)“ + 2c(b-a) + (b-a)“ +c
=2c2 &+ 2c(b-a) = 2c(c+b-a).
b(b+c) + c(c+a) + c(c+b) - ac
2¢2 4 2bc + b2 = (b+<3)‘2+c2

2

P1+P2+P3
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7. ENTIRELY NEW RPT-s. In a very little known paper Hillyer [7] has
given a most surprising infinity of triples of Rational Pythagorean
triangles in an explicit form, having equal areas. These are formed by

D, = RPT(u,v) = RPT(a® + ab + b°, b? - a?)
D, = RPT(u,v) = RPT(a® + ab + b2, 2ab +a°)
Dy = RPT(u,v) = RPT(2ab + b, a°+ab +b?) (7.1)

b>a>)> 0; b,a € Q*

As we see, Hillyer was not concerned about RPT-s; his Pythagorean tri-
angles had just to have rational sides. We shall operate with RPT-s
only and set

a,be N-{0}; bd>a>o0. (7.2)
We first investigate, whether the condition

ud>v>0 (7.3)
is fulfilled for Dl’ D2, D3. We have

Dy: u-v = a2 + ab + b2 - (b2 - a2)

=2b°2 4+ ab>0; u>v>O.

a% + ab + b2 - (2ab + a2)
b2 - ab = b(b-a) > O,
since b > a hence u > v > 0
D3: u-v = 2ab + 22 - (a2 + ab + b2)

= ab - a° = a(b-a) > O,

since b-a > 0, u > v > 0.
We shall now find the areas of Dl’ D2, D3, and have

D2: u-v

D :8, = (a?+absb?)(b2-a%)[ (a2+absb?)2- (b%-a2)?]
= (a2+ab+b2)(b2-a2)(a2+ab+b2+b2-a2)-(a2+ab+b2-b2+a2)
= (a2+ab+b2)(b2-a2)(ab+2b2)(ab+2a2),
S, = ab(a+ab+b?)(b2-a2)(a+2b)(b+2a). (7.4)
Dy:S, = (a®+absb?)(2absa®)[ (a2+absb?)?- (2ab+a?)?]
= (a2+ab+b2)a(a+2b)(al+ab+b2+2ab+al). (a2+ab+b2-2ab-a?)
= (a2+ab+b2)a(a+2b)(2a2+3ab+b2). (b2-ab).
Now
2a2 + 3ab + b2 = (2a+b)(a+b),
hence
S, = ab(a? + ab + b) (b2-a%) (a+2b) (b+2a) (7.5)
Dy:Sy = (2ab+b2) (a2+ab+b2) [ (2ab+b2)2-(a2+ab+b2)2]
= b(2a+b)(a2+ab+b2) (2b2+3ab+b2) (ab-a2).
Now

2b2 + 3ab + b2 = (2b-a)(b+a).
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Hence

S5 = ab(a’+absbd?) (b%-a®) (a+2b) (b+2a). (7.6)
Thus S; = S, = S5 =2,

2 2 2 .2

Y = ab(a“ +ab + b°)(b"-a”) (a+2b) (b+2a). (7.7)
We now return to the equation of Diophantus from (1.3)

a2+ab+b2 = 02

a+b > ¢ > b >a >0 (1.3)

a,b,c € N - {0}.
We found that the three triples RPT(c,b), RPT(c,a), RPT(a+b,c) have
equal areas, viz.

S = abc(b+a).
If in (7.7) we demand that a
a+b > ¢ > b > a > O we obtain

2-+ab-+b2:=02, solvable in natural number

T = abc?(b%-a) (a+2b) (b+2a), (7.8)
and from (7.8), and S = abc(a+b),
Y + S = c(b-a)(a+2b)(b+2a). (7.9)

Now the quotient Z =~ S is a natural number, and many authors have asked
and solved the question of the ratio of the areas of two RPT-s.

8. THE MAIN RESULT. We now form three RPT-s, having equal areas.
They are entirely new and unknown. We investigate

D, = RPT(u,v) = RPT(a’ - ab +b?, b? - a?);
D, = RPT(u,v) = RPT(a®-ab+ b2, 2ab - b2); (8.1)
Dy = RPT(u,v) = RPT(2ab - a2, a2 - ab + b2)

2a > b > a > 0; b,a € Q*
We first check for Dl’ D2, D3,

u>v>0, u-v > 0.
The reader note the condition
2a > b.
Later when we shall operate with RPT-s and the equation
a2-ab+b2=c2
we shall see that solutions of this equation are possible with 2a > b.
We have, (u,v) € Q')
Dy: u-v = a2 - ab + b2 - (b2 - a2)
2a° - ab = a(2a-b) > 0
v=1%-2a%5o0.
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2 2
= a2- 3ab + 2b2

= (2b-a)(b-a) > O

= 2ab- b2 = b(2a-b) > O.

- 2ab-a- (az-ab+b2)=3ab-282--b2

= (2a-b)(b-a) > 0.

u = 2ab—a2=a(2b-a) >0

We shall

Dl:S

1

D2: 32=

Thus we

=a_ab+b2 = (a-b)2+ab>0.

now find the areas formed by Dl’ D2, D3, and have
(a-ab+b?) (b°-a?)[ (a®-abs+b?) %~ (b2-a2)]
(a2-ab+b2) (b2-a2) (a2-ab+b2-b24+a2)- (a2-ab+b2+b2-a2)
(a2-ab+b2) (b2-a2) (2a2-ab) (2b2-ab)
(a2-ab+b2) (b2-a2)a(2a-b) (2b-a).

S, = ab(aZ-ab+b?)(b2-a2)(2a-b)(2b-a).

(a2-ab+b2) (2ab-b2)[ (a2-ab-b2)-(2ab-a)2]
(a2-ab+b2)b(2a-b) (a2-ab+b2-2ab+b2) (ab+a2)
(a2-ab+b2)b(2a-b) (a2-3ab+2b2)a(b+a)
(a2-ab+b2)b(2a-b) (2b-a)(b-a)a(b+a)
ab(a2-ab+b2) (b2-a?) (2a-b)(2b-a).

S, = ab(a2-ab+b?)(b2-a2)(2a-b)(2b-a).

= (2ab-a2)(a2-ab+b2)[ (2ab-a2)2- (a2-ab+b?)2]

(2ab-a2) (a2-ab+b2) ( 2ab-a2-a24+ab-b2)- (2ab-a2+a2-ab+b2)
a(2b-a)(a2-ab+b?) (3ab-2a2-b2)* (ab+b2)
ab(a2-ab+b2)(2b-a)(2a-b)(b-a)- (a+b)
ab(a2-ab+b2) (b2-a2) (2a-b)(2b-a).

S5 = ab(a2-ab+b2)(b2-a2)(2a-b) (2b-a).

have obtained the wanted result
(]
S; =8, = 83 = 5.

We now return to the equation

az-ab+b2=02, b>a>0 }

b>c>a>0; b,c,a ¢ N - {0}

and recall from (5.4) that there is a solution with

a = g +1; 2a>b

as we needed. With equation (4.1), J ' takes the form

(8.2)

(8.3)

(8.4)

(4.1)

(8.5)

779
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$' - abc?(b? - a?)(2a-b) (2b-a)

2a>b>c>a; a,b,c € N-{0}. (8.6)
Now with a2-ab+b2=cz, and (4.3), viz.

S = abc(b-a)
and obtain thus the quotient

3' £ s = c(b+a)(2a-b)(2b-a). (8.7)
As an example we shall take

a2-ab+b2=c2

(a’b’c) = (8’15713)'
Here 2a=16>15 = b; we obtain

8.15-.169.161.1-22,

™M
It

5 - 2%3.5.7.11-13%-23 = 71,831,760.

abc(b-a) = 8-15-13-7
23.3.5.7-13 = 10,920.

'+ 5= 211-13-23 = 6,578

71,831,760 + 10,920 = 6,578.

4]
1]
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