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ABSTRACT. The term barely continuous is a topological generalization of Baire-1
according to F. Gerlits of the Mathematical Institute of the Hungarian Academy of
Sciences, and thus worthy of further study. This paper compares barely continuous
functions and continuous functions on an elementary level. Knowing how the
continuity of the identity function between topologies on a given set yields the
lattice structure for those topologies, the barely continuity of the identity
function between topologies on a given set is investigated and used to add to the
structure of that lattice. Included are certain sublattices generated by the barely
continuity of the identity function between those topologies. Much attention is

given to topologies on finite sets.
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1. INTRODUCTION.

The principle results are: (1) Necessary conditions for the equivalence of
continuous and barely continuous. (2) Slightly finer as an indicator of "nearness"
of one topology to another in the lattice of topologies. (3) No non-trivial regular
topology on a finite set has an up lattice or a down lattice. Examples are included
to give the reader a better picture of barely continuous.

2. DEFINITION AND EXAMPLES.

A function f from a topological space X to a topological space Y is barely
continuous if for each closed subset A of X, the restriction of f to A with its
relative topology has at least one point of continuity (Kuratowski [1]).

Let each of the following topologies be defined on the closed interval [0,1],
and let each arrow denote the identity function. Let u be the usual topology, cc be
the countable complement topology, cf be the co-finite topology, [0,x) be the
topology with basic open sets of this form, and nc be the naive one point
compactification of [0,1) with the usual topology. The following statements are

easily verified if we take b.c. to mean barely continuous.
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not b.c. 3 not b.c. )
(1) cc ¢ u (6) cfE u
not b.c. centinuous
neot b.c. b.c.
(2) ct cc (7) [0,x) ¢ u
continuous continuous
b.c. \ not b.c.
(3) [O,x)E cf (8) [O,x); cC
L.c. b.c.
b.C. b.c. N
(4) nc u (9) ncg ct
continuous b.c.
not b.c. coniinuous
(5) nc, cc (10) nc 3 [C,x)
b.c. b.c.
TABLE 1

3. NECESSARY CONDITIONS FOR BARELY CONTINUITY TO IMPLY CONTINUITY.

THEOREM 2. If each barely continuous function from a topoiogical space X into
a topological space Y is continuous, then Y is indiscrete or every closed set in X
is also open.

PROOF. We will show that the contrapositive of this theorem is true. Suppose
Y is not indiscrete, and let V be an open set in Y such that V + Y. Since every
closed set in X is open if and only if every open set in X is closed, let U be an
open set in X such that U is not closed. Let v be an element of V and w be an
element of the complement of V. Define a function f from X into Y such that f maps
U to w and the complement of U to v. If A is a closed subset of X, then A
intersects U or A is a subset of the complement of U. In each case, f A is a
constant on an open subset of A, and so f is barely continuous. Now, let x be a
limit point of U such that x is not an element of U, and let Uy be an open set
containing x. Then, v and w are elements of f(Uyx), with f(x) = v € V, and
f(Uy) not a subset of V. Hence, f is not continuous.

One may easily construct counterexamples to show that the conditions of
THEOREM 2 are not sufficient.

DEFINITION 3. A topological space (X,T) is barely discrete if each function
from (X,T) to any topological space is barely continuous.

It is easily seen that a topological space (X,T) is barely discrete if and
only if the identity function from (X,T) to (X,discrete) is barely continuous.
4. LATTICE PROPERTIES.

Let X and Y be topological spaces on the same set.

DEFINITION 4. X is barely finer than Y (Y is barely coarser than X) if the
identity map from X to Y is barely continuous. We write X[>]Y, or Y[<IX.

DEFINITION 5. X is slightly finer than Y (Y is slightly coarser than i) if X

is finer than Y and Y is barely finer than X. We write X[2>]Y, or Y[g]X.
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DEFINITION 6. X is barely equivalent tc Y if X is barely finer than Y and Y is
barely finer than X. We write X[=]Y, or Y[=]X.

DEFINITION 7. A topology T on X is an ultraspace if the only topology on X
strictly finer than T is the discrete topology. The ultraspaces on a set X are of
the following form. Let x be an element of X, and U be an ultrafilter on X, then a
subset V of X is open if x is not an element of V or if V is a member of U which
contains x (Frohlich [2]).

THEOREM 8. Each ultraspace on a set X is barely discrete.

PROOF. Let (x,U) be an ultraspace on X, Y be a topological space, f be a
function from X to Y, and A be a closed subset of X. Then x = A, or A-{x} has the
discrete topology. In either case, it is clear that f‘A has a point of
continuity. Hence, f is barely continuous.

Suppose X has at least two elements. Then the identity map from (X,
indiscrete) to (X, discrete) is not barely continuous. Also, the only topology on X
coarser than all the ultraspaces is the indiscrete topology. Since the identity is
barely continuous on each ultraspace, there is no coarsest topology on X for which
the discrete topology is slightly finer. From this, it is clear that there is no
coarsest topology on X which is barely discrete. Also, if f is a function which is
barely continuous from (X,Ta) to a topological space Y for each a in some index
set A, then f is not necessarily barely continuous from (X, inf{Ta}) to Y.

LEMMA 9. Let X, Y, and Z be topological spaces. If f is a barely continuous
function from X to Y, and g is a continuous function from Y to Z, then gof = g(f) is
a barely continuous function from X to Z.

PROOF. Under the assumptions of the lemma, let A be a closed subset of X, and
a be an element of A such that f|A is continuous at a. Hence, gof is barely
continuous, since (gof)]A = g(flA) is continuous at a.

We now give an example to show that under the conditions of the lemma, if f is
continuous and g is barely continuous, then gof is not necessarily barely
continuous. Let f and g be identity functions, let X = Y = Z = fa,b,c} , the
topology on X be {Q,{c},{a,b},X} , the topology on Y be the indiscrete topology,
and the topology on Z be {Q,{a},{b},{a,b}, Z}. Now, f is continuous from X to Y,
and g is barely continuous from Y to Z, but gof is not barely continuous from X to Z
since (gOf)I{a,b} is neither continuous at a nor at b.

This property of slightly finer can be used as an indicator of how far above
one topology another topology happens to be in the lattice of topologies on a given
set. It follows from Lemma 9, if T and S are topologies on a set X, and T is
slightly finer than S, then each topology on X between T and S is slightly finer
than S. Also, if T is finer than S, and T is not slightly finer than S, then each
topology finer than T is not slightly finer than S. Thus, within a chain of
topologies on X, if we consider all topologies which are finer than S, the
topologies which are slightly finer than S are closer to S than the topologies which
are not slightly finer than S. This is more formally stated in the next theorem.

THEOREM 10. Suppose S,T, and W are topologies on a set X such that W is finer
than T, and T is finer than S. If W is slightly finer than S, then T is slightly
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finer than S. (Also, if T is not slightly finer than S, then W is not slightly finer
than S.)

PROOF. Let S,T, and W be topologies on a set X so that W is finer than T, and T
is finer than S. Suppose W is slightly finer than S, then the identity map from
(X,S) to (X,W) is barely continuous. Since the identity map from (X,W) to (X,T) is
continuous, it follows from Lemma 9 that the identity map from (X,S) to (X,T) is
barely continuous. Hence, T is slightly finer than S.

COROLLARY 11. Let S, T, and W be members of the same chain in the lattice of
topologies on a set X. If W is finer than S, but not slightly finer than S, and T is
slightly finer than S, then W is finer than T.

Upon an investigation of the lattices of topologies on a three element set, we
find that barely equivalence is not an equivalence relation. However, any two t1
topologies on a set X are linked by a "chain" of topologies so that each link in the
"chain" consists of two barely equivalent t) topologies.

DEFINITION 12. Two topologies, T and W, on a set X are p-weakly equivalent if
there exist a finite set of topologies, Tl’ T2,..., Tn’ on X so that T,

W, Tl’ T2, ey Tn’ each have property p, and T[=]T1[=]T2[=] coe [=1T=)W.

THEOREM 13. If T and W are Y topologies on a set X, then T and W are
tl—weakly equivalent.

PROOF. Consider the tl topologies on a set X. This set of topologies forms
a complete sublattice of topologies on X. The finest t1 topology is the discrete
topology, and the coarsest t1 topology is the co-finite topology. Let TC be
the co-finite topology, T be a t topology, x be an element of X, and S be the
topology consisting of each member of T to which x does not belong and each member of
Tc to which x does belong. We see that S is a ty topology, T is slightly
finer than S, and S is slightly finer than Tc' Thus, Tc is tl—weakly
equivalent to T since slightly finer implies barely equivalent. Hence, any t
topology is tl-weakly equivalent to Tc, and thus any two ty topologies
are t,-weakly equivalent to each other.

5. SUBLATTICES.

Consider again the lattice of topologies on a set X. For each topology T on X,
let T+ denote the collection of topologies which are slightly coarser than T, and let
T+ denote the collection of topologies which are slightly finer than T. Read T+ as
T-down, and T+ as T-up.

DEFINITION 14. Let T be a topology on a given set X. If T¢ forms a sublattice
of the lattice of topologies on X, then call that sublattice the down lattice for T.
If T+ forms a sublattice, then call that sublattice the up lattice for T.

We find that for a three element set each down lattice has the indiscrete
topology for its coarsest member and each up lattice has the discrete topology for
its finest member. Also, each topology on a three element set which is not a
non-trivial regular topology has either a down lattice or an up lattice, and each
non-regular topology (on a three element set) which has the same number of open sets
as each non-trivial regular topology (on a three element set) has both a down lattice

and an up lattice. Previous results show that for a set with more than one element,
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the discrete topology has no down lattice, and the following lemma shows that for a
finite set with more than one element, the indiscrete topology has no up lattice.

LEMMA 15. For a finite set, the discrete topology is the finest member of any
up lattice.

PROOF. Let T be a topology on a finite set X. Let XiseoesX be the
members of (X,T) which are not open sets as singleton sets. For each i=1,2,...n, let
Ti be the topology whose base is formed by taking the base for T and including
X5 - We find that Ti is slightly finer than T for each i=1,2,...,n. Also,
the only topology that is finer than Ti for each i=1,2,...,n is the discrete
topology. Thus, if T has an up lattice, then the finest member of that up lattice is
the discrete topology.

LEMMA 16. For a finite set, the indiscrete topology is the coarsest member of
any down lattice.

PROOF. Let T be a topology on a finite set X, with subbasis B =
(Vl,...,Vm}. For each i=1,2,...,m, let Ti be the topology with B -

{Vi} as its subbasis. Suppose A is a closed subset of (X’Ti)‘

Case (i) A is a subset of Vi’ In this case the

topology on A induced by Ti is the same
as the topology on A induced by T.

Case (ii) A is not a subset of Vi' In this case the
topology on A - {Vi} induced by Ti is
the same as the topology on A — {Vi} induced
by T.

In either case, the identity map from (X’Ti) to (X,T) is seen to be barely
continuous, and the only topology coarser than Ti for each i = 1,2,...,m is the
indiscrete topology. Thus, if T has a down lattice, then the coarsest member of that
down lattice is the indiscrete topology.

THEOREM 17. For a finite set, no non-trivial regular topology has an up lattice
or a down lattice.

PROOF. 1In a non-trivial regular topology on a finite set X, each point has an
open neighborhood smaller than X. Thus, the identity map from the indiscrete
topology to such a non-trivial regular topology is not barely continuous. Also, in
such a topology there is some point which has a smallest open neighborhood larger
than the point itself. Since that open neighborhood is also closed, the identity map
from such a topology to the discrete topology is not barely continuous. Hence, by

the two preceeding lemmas, the theorem is proven.

REFERENCES

1. Kuratowski, K. Topology, Vol. 1, Academic Press, New York, 1966.

2. Frohlich, 0, Das Halbordnungssytem der topologischen Raume auf einer
Menge, Math. AnE;_156 (1964), 79-95.

3. Steiner, A.K. The Lattice of Topologies: Structure and Complementation,
from the author's doctoral dissertation at the University of New
Mexico in 1965.

4. Michael, E. and Namioka, 1. Barely Continuous Functions, Bulletin De

L'Academic Polanaise Des Sciences, Vol. XXIV, No. 10 (1976), 889-892.




Mathematical Problems in Engineering

Special Issue on

Modeling Experimental Nonlinear Dynamics and

Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the
70s, was focused on intentionally built nonlinear parts in
order to improve the operational characteristics of a device
or system. Keying, saturation, hysteretic phenomena, and
dead zones were added to existing devices increasing their
behavior diversity and precision. In this context, an intrinsic
nonlinearity was treated just as a linear approximation,
around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear
and chaotic phenomena, engineers started using analytical
tools from “Qualitative Theory of Differential Equations,”
allowing more precise analysis and synthesis, in order to
produce new vital products and services. Bifurcation theory,
dynamical systems and chaos started to be part of the
mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Prob-
lems in Engineering aims to provide a picture of the impor-
tance of the bifurcation theory, relating it with nonlinear
and chaotic dynamics for natural and engineered systems.
Ideas of how this dynamics can be captured through precisely
tailored real and numerical experiments and understanding
by the combination of specific tools that associate dynamical
system theory and geometric tools in a very clever, sophis-
ticated, and at the same time simple and unique analytical
environment are the subject of this issue, allowing new
methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

Manuscript Due December 1, 2008

First Round of Reviews | March 1, 2009

Publication Date June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and
Control Engineering Department, Polytechnic School, The
University of Sdo Paulo, 05508-970 Sao Paulo, Brazil;
piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratério Associado de
Matemadtica Aplicada e Computagdo (LAC), Instituto
Nacional de Pesquisas Espaciais (INPE), Sdo Jose dos
Campos, 12227-010 Sao Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research,
King’s College, University of Aberdeen, Aberdeen AB24
3UE, UK; grebogi@abdn.ac.uk

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1Call for Papers4pt
	Guest Editors

