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ABSTRACT. The author applies the stress energy of differential forms to study the
vanishing theorems of the Liouville type. It is shown that for a large class of
underlying manifolds such as the Euclidean n-space, the complex n-space, and the
complex hyperbolic space form, if any vector bundle valued p-form with conservative
stress energy tensor is of finite norm or slowly divergent norm, then the p-form

vanishes. This generalizes the recent results due to Hu and Sealey.
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1. INTRODUCTION.

The classical Liouville theorem states that any bounded harmonic function defined
on the entire plane 1is a constant function. Later many authors generalized the
theorem. Yau [1] generalized it to harmonic functions on complete Riemannian
manifolds with non-negative Riccil curvature. It was further extended to harmonic maps
between Riemannian manifolds by Eells and Sampson [2], Cheng [3], Garbar et al. [4],
Hu [5], Xin [6], Sealey [7] and others.

It is well known that if the field equation of a physical system is obtained by
means of calculating the derivative of the action functional I, we can define a so
called stress energy tensor S such that S is conservative at the critical values of
I. 1In particular, the stress at a point of an elastic body is described by a tensor
(Sij) in the Euclidean space R3. The law of conservation of momentum about some
origin implies the stress energy tensor Sij be symmetric and the system be 1in
equilibrium means that sij be divergence free. Recently, Baird and Eells [1] proved

that if the map between Riemannian manifolds is harmonic, then its stress energy

tensor is conservative. This might make the harmonic map a new physical explanation.
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The purpose of the paper is to apply the stress energy tensor of p-form with
values in a vector bundle over some kind of Riemannian manifolds to the vanishing

theorem of the Liouville type. The main result is the following.

THEOREM 1.1. Let U" be the complex hyperbolic space form and F a Hermitian
vector bundle over U". Let w be a p-form with values in F, p < n. If wis of
finite or slowly divergent norm over U" and its stress energy tensor is

conservative, then ® = O.

It must be pointed out that this is a more general vanishing theorem of vector
bundle valued p-forn. We all know that there are many important maps between
Riemannian manifolds such as harmonic, relative harmonic [5], holomorphic [8] and
relative affine maps [9] whose differentials possess the free divergent stress energy
tensors. Sealey [7] proved that if the norm of a harmonic l-form with values in a
vector bundle over " is integrable, then the l-form vanishes. Therefore, Theorem 1

means that under a weaker condition than Sealey's.,a stronger conclusion still holds .

In section 2 after introducing some notations, we establish an integral formula
of the stress energy tensor and some kind of radial variational formula for p-forms by
using the Lie derivative. Besides being applied to the proof of Theorem 1, these
formlas are of interest in its own right. 1In section 3, we prove Theorem l.l. by
means of estimating the first variation of the norm of p-form motivated by the method
in [4]. Finally, we expand our result to the general case where the underlying
manifold can be the complex n-space or some kind of conformal flat Riemannian

manifolds.

2. NOTATIONS AND LEMMAS.

For simplicity, we only state some notations and formulas for the Riemannian
vector bundle over real Riemannian manifold, those of Hermitian vector bundle over
Kaehler manifold can be written correspondently. Let F be a Riemannian vector bundle
over Riemannian manifold M. We define an inner product in /\p'!x*MOFx by setting

<w, 8> = z <wley yeee, &y ), e(ei reees €y ) > (2.1)
1)<ty 1 P 1 P
where w, 8 eApT:MO F, {e,.ec, e } is any orthonormal basis of T, M. Integrating
this pointwise inner product over M gives an inner product in AP(F), which denotes
the space of sections of /\PT*MO F. For a linear connection V on F we define the
covariant derivative by
P

L

v oes =V oo -
) Ky e X) = T oy, X = L

w(Xl,... ,Vyxi,... ,Xp) (2.2)
for Y, X € A(TM). The exterior differential d:Ap(F) +> APH (F) is given by

dw(Xl,...,X )

ptl
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p+l -
N i+l .
= . (D Vo (X yeeey X,500e, X ) (2.3)
io1 X 1 i pt+l
i+ : N
+] D 3. XKD, X preees Xppens Kpaees X))
i4j
where Xi z A(TM), 1 . 1i,j s p+l, Xi means Xt is deleted. The codifferential
5:AP(F) » AP-I(F), p?> 1, is given by
n
6(xl,...,xp_1) =-1 v wley, Xppeees X)) (2.4)

i=1 i

The generalized Laplace-Beltrami operator for p-form with values in F is defined
by & =48 + éd. Any p-form w with values in F satisfying the equations dw =0,
Sw = 0 is called harmonic. If M is a manifold without boundary and ®is of compact
support, then ® is harmonic iff Vw = 0.

The symmetric square w °*w of w € AP(F) is a symmetric F-valued 2-tensor defined
by
w*w (X,Y) =< ixm s iyw > (2.5)

where X,Y € A(TM), ix denotes the contraction with X. We call

E *] (2.6)

w - ﬂ €u
the norm of w over M where e, = 'w|2/2. The stress energy tensor of w is given by

5, = e, 8- 0w (2.7)

in which g is the metric tensor of M.

LEMMA 2.1. Suppose X be a vector field with compact support over M and w p-form

with values in a vector bundle, then

JCL w, 0> %1 = [divs (X *1 + [ wew (X, 3/3n) * (2.8)
M ¥ M aM

in which div S  is the divergence of S  and 9/3n the unit outward normal to M.
PROOF. Since [6]

div sw(x) =< ix dw, w > + < 6w, 1xw >, (2.9)
we get
KL w,w>=<1i deo+di v, w>
X X X

= div sw(x) + < dixw, w > - < Sw, 1xw > (2.10)

Integrating and using Green theorem immediately complete the proof.
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Let us consider a special case of the above formula. Assume ¢: M * N be a smooth map
from a Riemannian manifold M without boundary to Riemannian manifold N. According to

Lemma 1, we know that

[ <L do, dé > *1 = [ <de(X), 8d¢ > *1 Q.11
M X M

sO
siv S, = <1y, o> (2.12)

where S0 is the stress energy tensor of ¢ and T¢ = 8d¢ is the torsion field of
¢ Thus, we easily prove
COROLLARY (Baird and Eells [10]). The stress energy tensor of a harmonic map from
M to N must be conservative. Conversely, if ¢ is a differential submersion and its
differential d¢ is of counservative stress energy tensor, then ¢ is harmonic.
LEMMA 2.2. Let U"™(p) be an open disc with radius p in the complex n-space
¢" and @ be an F-valued p—form over u"(p). Suppose W, be an l-parameter family of

p—forms such that
w (Z A ) =t (¢ w ) (Z eee Z ) (2.13)
t 1’ ’ p t tz 1 ’ ’ P

where z e U (p), 0 < ¢t |z|<p, (Zl,..., Zp} are the constant vector fields over
*

u"(p), and . is induced from parallel transport in F along the straight line from tz

to z. Then we have

L T

=L W,
9
dt t =1 rd/dr

(2.14)

PROOF. This depends largely on a direct computation. One can easily see that at
t=1

d *
ac (¢t wtz) (Zl,..., Zp) = Vra/ar uKZl,..., Zp) (2.15)

Therefore at t=1

d
ar wt(zl,..., Zp) vralarw(zl’°"’ Zp) + pw(zl,..., Zp) (2.16)
On the other hand, we may assume z

[r3/3r,21] = -7

1" 3/8:i or 8/3:1. Thus, [Zi,Zj] = 0 and

iy It follows that

(Ltalarm) (Zl,-.., Zp) = (ira/ar do + diralarm) (Zl""’ zp)

P
. .
=d0(r /98,2 ,0nn, 2) + ] DMV 0(03/90,2, ey Z,eee, 2)  (2.17)
Poya Z ! i P

=Vra/arw (Zl""’ Zp) + pw (zl""‘ Zp).
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The proof is completed.
From lemmas 2.1, 2.2 we immediately obtain
LEMMA 2.3. If w is an F-valued p-form with conservative stress energy tensor,
then d”wtuzp /dt > 0 at t = 1,
Finally, we give the following.
DEFINITION. Let F be a Hermitian vector bundle over U™ and w be a p-form with

values in F. The norm of ® over U called slowly divergent if

(r)

1-r

dr = »

O =
L.}

f e, *] =® and

hold for any positive continuous function f(r) in (0,1) (for example
f(r) =1 / log (1-r) ), we have

é“ f(r)ew *] { =,

3. THE PROOF OF THEOREM 1.1.

After establishing the preceding lemmas, it is not difficult to prove Theorem
1. We represent the complex hyperbolic space form by the open unit disc
U™ in C" with the complete Kaehler metric [11]

a - Eza;a) (Zdz dz ) + (2;adza) (Zzud;a)

g=4 5 (3.1)
(1 - Zzaza)
1,0 .. n 0,1 n
It is obvious to see that Tz (U7) and Tz (U") have respectively the orthonormal
bases
1 - r2 3 1-r2 3 1 -2 3
2 3z, ’> 2 9z, > > 2 9z
1 2 n
and
1 - r2 1 -2 2 A= 1? a
] 5 s ) 'a—_—, ceey 2 a3
1 % Zn

For convienence, we may assume that w is of degree (k,h), k+h = p. Then ® can be

expressed as

w=Lf Aeeondz, Adz, AeeoAdz, . (3.2)
11...1kj1...1hdz11 S Iy
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To begin with we calculate the inner product l“’t|2 at the point (21,0,...,0). At
that time, the Kaehler metric is reduced to
4 - 2, ¢ -
g =———(dz,dz, + (1 - 2z°) ] dz dz) (3.3)
2 1771 a a
2 2
a-r9

We can decompose w, to w, = wi + wi + w3t among which wt consists of such p-forms
that do not contain the factors dzl and d;l those of m: contain factor
dzl or d;l and wi are the remains. Using (2.13), (3.3), we can compute that

2,p
12 2pp1y2 (1 -
e e e 2
- r
| 2|2 2p; 272 (1 - 2P
w =t 'w —_—
t t2 () _ (2,2t

2, p+2
3|2 2p' 3,2 (1 -r7)
Iw =t "o , (3.4)
t tz ) o t2r2)p+2

Then, since " is a homogeneous space, the restriction on z can be removed and these
expressions hold for all 1z € lIn. Denote dV and dS be the volume elements of

U™ and the hypersphere Sr in Un respectively. We have dV = 2drdS/ (l—rz). Now
assuming

A(r,t) =—-2-—zf Imtlzds (3.5)
1 -r" s
r
we get o p
“‘”t“g = I 2 2 dr [ |Nt|2ds = ! A(r,t)dr (3.6
0 1-r S 0
r
and
2,2.p
d_lo]l2 -4 ,2p-2n f [ m1|?' A -rc/e) (3.7)
dt tp  dt lz|<to I (1 - )P
_ .2, 2,p+l _ .2, 2.pt2 -
. lwz|2 (A -r /t2 2 )2 _(I__I?_ét_pl_i_] G,/ d2dz
a-rHP -9
where
n? 4 2,2 - 2 n?,n 2,2yl
G, e 1 det(———— [ - 7/t )608+ zzg/t’]) =17 47/ - ¢ £ - 3.8

(1 -r7)

Then at t=1

[a+1-pla'}?+

2 2
—g—tllmt“p = pA(p,1) + 2(p -~ n) ol - / z|<p

p

2
(a-pf? )P+ @-p- 1| EE v (3.9)
1 -r

2 (n-p- l)r2
<pap,) -2n-p) [ el 1+ 7o) W
|z|<p (n-p) (1 -1r%)




APPLICATION OF STRESS ENERGY TENSOR 681

Here we assume p < n-1 because the case of p = n-1 is simpler than the former and can

be treated by the same way. It follows from Lemma 3.1 that

2 (n - p~- l)r2
pA(P,1) > 2tn - p) [ lwl® (1 + R (3.10)
| z| <p (n-p) (-1

Suppose that w € AP(F) do not equal zero identically on u™. Thus there exists

%0 such that 0 < 90 <1 and
2 (a - p- D
Ky = 2(n - p) { [w]c1 + P 5-) av > 0 . @3.11)
z|<p, (n-p) (1 -1%)
Therefore
P (n - p - 1)i
PA(R,1) > Ky + 2(n - p) [ (1 +—F B L 5-) A(r,1) dr. (3.12)
o (n-p) (1 -17)

According to the method in [7], one can prove that

n-p-1 (3.13)

AG,D > K/ (1)
for some K, > 0 and all 0 <p<l. Then for any positive continuous function f(r)
with

1
f%(—f‘)‘;dr“"
0

we have

| f(r)eav > } rf(r)A(r,1)dr > K, } —f—(—")—z dr ==
" o q 1-r
This ends the proof.

Finally, instead of considering the complex hyperbolic space form functioning as
the underlying manifolds, we can consider the other kind of underlying manifolds such
as the Euclidean n—space Rn, the complex n-space c” and some conformal flat
Riemannian manifolds. Since the corresponding lemmas still exist, one may derive the
corresponding estimations over these manifolds. VYor sake of simplicity, we only state
the following.

THEOREM 3.1. Let w be a p-form with values in F over c®, If the stress energy
tensor of w is conservative and the norm of w over C" is finite or slowly divergent,

then w vanishes.
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DEFINITION 3.1. A conformal flat Riemannian metric g on Rn is called to be of
type A if

2

@ g =it

1=l xi and the mean curvature normal H of Sr never

pointing away from zero. g 1s called to be of type B if the underlying space is the

open unit disc in R® and

n 1
(B) g = fz(r) ) dxi where f satisfying | £ 2pdr = © and the mean
i=1 0

curvature normal H of Sr never pointing away from zero.

THEOREM 3.2. Let M be a conformal flat Riemannian manifold of typed A or B. Let
w be a Riemannian vector bundle valued p-form over M, p > n/2, with conservative
stress energy tensor. If the norm of w over M is finite or slowly divergent. Then

w vanishes.
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