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\ABSTRACT. Under a fairly mild completeness condition on spaces Y and Z we show that
every x-continuous function f: X X Y x Z » M has a "substantial" set C(f) of points
of continuity. Some odds and ends concerning a related earlier result shown by the
authors are presented. Further, a generalization of S. Kempisty's ideas of
generalized continuity on products of finitely many spaces is offered. As a
corollary from the above results, a partial answer to M. Talagrand's problem is

provided.
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1. x-CONTINUITY.

The notion of symmetric quasi-continuity introduced by S. Kempisty [1] has been
generalized in Lee and Piotrowski [2], to x-continuity. In what follows let X, Y, Z
and T be spaces. Following Lee and Piotrowski [2] a function f: X X Y x Z > T 1is
x-continuous if for every (p,q.r) € X x Y x Z, for every neighborhood U xV x W of
(p,q,r) and for every neighborhood N of f(p,q,r) there exists a neighborhood U' of p
with U'c U and nonempty open sets V' and W' with V'c V and W'c W such that for all
(x,¥,2) € U' x V' x W' it follows that f(x,y,z) € N.

We shall first show that under certain general assumptions concerning the spaces,
x-continuous functions have "large" sets of points of joint continuity. In order to
do this we first list some necessary definitions.

Let A be an open covering of a space X. Then a subset S of X is said to be
A-smafl if S is contained in a member of A. A space X is called 4trongfy countably

compfete if there exists a sequence {Ai: i=1,2,...} of open coverings of X such that
and sequence {Fi} of Ai—small, closed subsets of X for which Fi o] F4+1 has a non-
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empty intersection.

The class of strongly countably complete spaces include countably compact and
complete metric spaces. This fact follows easily from a theorem due to A.
Arhandel'skii [3] and Z. Frolik [4] which states that in the class of completely
regular spaces, éech—complete and strongly countably complete spaces coincide
(Engelking [5]), see also Frolfk [4], where some other properties of these spaces
such as their invariance under taking closed, open subspaces or products are discussed.

A space X is called quasi-negular, (Oxtoby [6]) if for every nonempty open set
u, there is a nonempty open set V such that clV < u. Obviously, every regular space
is quasi-regular.

Let us recall that a function f: X X Y + Z is said to be quasi-continuous with

hespect to x, (Kempisty [1] p.188,) if for every (p,q) € X x Y, fore very neighbor-
hood N of f(p,q) and every neighborhood U x V of (p,q) there exists a neighborhood
U' of p with U' € U and a nonempty open set V' © V such that for all (x,y) € U' x V'
we have f(x,y) € N. Quasi-continuity with respect to y can be defined similarly.

LEMMA 1. (Lee and Piotrowski [2], Lemma 3 p. 383). Let X, Y, Z and T be
spaces and let F: X x Y x Z > T be a function. Then f is x-continuous if and only
if g: X X S > T is quasi-continuous with respect to x, where S =Y X Z and
g(x,(y,2)) = f(x,y,2).

THEOREM 2. Let X be a space, Y and Z be spaces such that Y X Z is quasi-regular,
strongly countably complete and let M be metric. If f: X x Y x Z » M is x-continuous,
then for every x € X, the set C(f) of continuity points of f is dense GG subset in
{x} x Y x z.

PROOF. In view of Lemma 1 it is sufficient to prove the following:

CLAIM. Let X be a space, Y be a quasi-regular, strongly countably complete and
Z be metric. If f: X X Y > Z is quasi-continuous with respect to x, then for all
x € X the set of points of joint continuity of f is a dense G6 subset of {x} x Y.

PROOF. First we will prove that the set of points of joint continuity of f is
dense in {x} x Y. Let x € X, y € Y and U x V be any neighborhood U of x, contained
in U, and a nonempty open set vl ¢ V such that for all (x',y') and (x",y") in
vl x vl, we have p(f(x',y'), £(x",y"™)) < 1. Without loss of generality we may
assume that V! is contained in an element Al of the covering Al of Y. Let W! be a
nonempty open set such that cl wlcvl, soc1w is Al—small. Then U! x W! is a

neighborhood of (x,yl), where u, € w‘, and since f is quasi-continuous with respect

to x at (x,yl), there is a neigiborhood U2 of x, contained in Ul and a nonempty open
set V2 ¢ W!, such that for all (x',y') and (x",y") in U? x V2 we have p(f(x',y"),
f(x",y")) < }. Similarly, we may assume that V2 is contained in an element A2 of the
covering A2' Let W2 be a nonempty open set such that cl W2 c V2, We see, that

cl W? is Az-small.

Now, proceeding by induction we get a neighborhood " x Vv of (x,yn), Y, € Vn,
such that for all (x',y') and (x",y") in ot x Vn, we have p(f(x',y'), £(x",y")) < %
and that V" is contained in an element A_ of the covering kn of Y. Moreover, there
is a nonempty open sets W' such that v+l c c1 W" ¢ v?. Thus each cl W" is An-small,

obviously cl Wl Wn+1. Since Y is strongly countably complete ht cl Wt # 0. Let
n=1
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cl W'. Then

«
)
=3}

(x,5%) € Wxeclwhe n @xV)cyuxy.

1 n=1

"o 8

n

Thus (x,y*) e (UxV) n ({x} x Y) and (x,y*) is a point of joint continuity of
f. This shows the density of the set of points of joint continuity of f in the set
{x} x v.

The proof that this set is Gg subset of {x} x Y easily follows, when we recall
that the function f takes values in the metric space Z. This completes the proof of
Claim.

Thus, Theorem 2 is shown.

The forthcoming, Proposition 3 is contained in Lemma 5.1 of [6], since any
quasi-regular strongly countably complete space is pseudo-complete; take
B(n) = the class of all nonempty open sets that are An-small. Then {B(n)} is a
sequence of (pseudo-) bases that shows X to be pseudo-complete.) We would like to
thank the referee who make the above observation.

PROPOSITION 3. (Oxtoby [6], Lemma 5.1) Every quasi-regular strongly countably
complete space X is a Baire space.

REMARK 4. Observe that neither base countability nor metrizability assumptions
are made on the considered spaces X, Y, Z in Theorem 1 while in Theorem 2 of [2] the
same conclusion concerning the set of points of continuity is obtained under an
extha assumption that X is first countable, Y is Baire, Z is second countable in a
neighborhood of any of its points and such that Y Z is Baire.

2. CONDITIONS IMPLYING x-CONTINUITY - COUNTER-EXAMPLES.

Given spaces X and Y; a function f: X + Y is said to be quasi-continuous

(Martin [8], compare Kempisty [1]) if for every x € X and for every neighborhood U of
x and for every neighborhood V of f(x) have: U N Int £ (V) # @.

The main result of Lee and Piotrowski [2] is the following:

THEOREM A. (Lee and Piotrowski [2], Theorem 1, p. 383). Let X be first count-
able, Y be Baire, Z be second countable such that Y x Z is Baire and let T be
regular. If f: X XY x Z > T is:

(1) continuous at X x {y} x {z}, y e Y, z € Z, and

(2) quasi-continuous at points of {x} x Y x {z} for all x € X and z € Z, and

(3) quasi-continuous at points of {x} x {y} x Z for all x ¢ X and y € Y

then f is x-continuous.

The first natural question which comes up is to check whether the converse of
Theorem A is true. Apparently, the following Example 5 settles this question in the
negative.

EXAMPLE 5. Let f: R?® + R be defined by

f(x,y,2) = s 1f (x,y,2) # (0,0,0)

0, otherwise
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The function f is x-continuous, however, fixing y = 0 = z we obtain that
£(x,0,0) is not continuous.
Now we shall investigate the necessity of the assumptions in Theorem A, in
particular:
(*) - continuwity of f at points of X x {y} x {z}
(**) - quasi-continuity of f at points of {x} x Y x {z}, and
(**%*) - quasdi-continuity of f at points of {x} x {y} x z.

In what follows (Examples 6 and 7) such constructions will be provided.
EXAMPLE 6. The assumption (*) is essential. 1In fact, let us consider a func-
tion f: [-1,1]3 + R3 given as follows

(x,y,2+1), if (x,y,z) € [0,1] x [0,1] x [0,1]
f(x,y,2) = (x,y,z-1), if (x,y,z) € [-1,0] x [-1,0] x [-1,0]
(x,y,z), otherwise

A standard verification that f has the required property, (namely f is not
x-continuous at (0,0,0)) is left to the reader. Using somewhat more complex, but
still elementary techniques we shall show that also (**) (as well as (***)) is
essential. In fact, we have

EXAMPLE 7. Consider the function g:[-1,1]% > R® given as follows:

(X,Y,Z + l) if (X,Ysz) € [-1’1] x [-é’llx
g(X,y,Z) = X{([—i’i) n IQ) U [!’1]}

(X,y,z). otherwise

Again, we leave to the interested reader a standard verification that f is not
x-continuous at (0,0,0).
3. ONE-PROMISING HYPOTHESIS.

Observe that the definition of x-continuity at (p,q,r) requires the existence
of a "small" neighborhood U' of p and "small" nonempty open sets V' and W' such that
q and r "clusters" to V' and W' respectively and such that the set f(U' x V' x W')
is contained in a "small", previously chosen, open set N. This observation prompts
us to label this kind of product almost continuity as !-3-continuity - since we
require the existence of only one "small" neighborhood U' (around p) of the three
neighborhoods U, V, W.

The term "1-3-continuity" has been used already, in a different sense in
Breckenridge and Nishiura [9].

So, now let us consider "2-3-continuity".

More precisely, given spaces X, Y, Z and T, we say that f: X x Y X Z > T is
2-3-continuous or more specifically xy-continuous, if for every (p,q,r) € X x Y x Z,
for every neighborhood U X V x W of (p,q,r) and for every neighborhood N of

f(p,q,r) there is a neighborhood U' of p, with U'c U, there is a neighborhood V1 of

q, with VlC V and a nonempty open set wl, with WIC W such that for all

(x,¥,2) € U1 x V1 x Wl we have f(x,y,z) € N.
Now, 3-3-continuity can be defined easily; the set Wl in definition of
2-3-continuity is assumed to be a neighborhood of r - not just only a nonempty open

subset of W.
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Clearly, every 3-3-continuous (= continuous) function is 2-3-continuous;
2-3-continuous functions are 1-3-continuous and the latter are in turn 0-3-continuous
(= quasi-continuous).

It now follows from a result of T. Neubrunn [10] that if X, Y, Z are '"nice"
(e.g. Baire, second countable), T-regular then if f: X x Y x Z > T is separately
quasi-continuous then it is (jointly) quasi-continuous.

We can present this fact in the following symbolic equality:
"0+0+0=0",

where the numbers (0 or 1) on the left side of the equality stand for quasi-continuity
(0) or continuity (1) of the corresponding sections and the numbers on the right
(1 =0, 1, 2 or 3) denote the corresponding i-3-continuity of f as a function of
three variables.

Theorem A implies that if X, Y, Z and T are as above and if f: X x Y x Z > T is
continuous in x and is quasi-continuous in y and is quasi-continuous in z, then f is

1-3-continuous. Consequently, we get:
"L+0+0=1".

In view of the above considerations it is now natural to state the following:
HYPOTHESIS. Let X, Y and Z be Baire, second countable spaces and let T be
regular. If f: X xY > Z T is:
1) continuous in x, and
2) continuous in y, and
3) quasi-continuous in z,
Then f is 2-3-continuous;

In other words:
"T+1+0=2"

We shall resolve this Hypothesis in the negative in the forthcoming Example 8.
Now we shall exhibit two examples of i-3-continuous functions which are not
(i + 1)-3-continuous, i = 1,2.
EXAMPLE 8. A 1-3-continuous functin which is not 2-3-continuous. Let

f: R® + R be given by f(xl,xz,x3) = g(xl,xz) where g is an arbitrary separately
continuous function which is discontinuous at (0,0).
EXAMPLE 9. A 2-3-continuous function which is not 3-3-continuous (= continuous).

Take f: R3?> > R to be f(xl,xz,x = h(x3), where h is any function which is

3)
continuous except for O.

Using the above pattern the reader will easily construct 0-3-continuous function
(= quasi-continuous) which is not 1-3-continuous.

Apparently, the above constructions can be illustrated with the following very
specific formula-ready example.

EXAMPLE 10. Let f: R® > R be a function.
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= 3 =
f(xl,xz,xa) gi(xl,...,xi), i 1,2 where
i
ox,
_ =1y
i
.é (x,) i
83(X,seeurx,) = 313 , if ¢ xotso
i1 1 jo1 3

0, otherwise

Then f is i-3-continuous which is not (i + 1)-3-continuous, i = 1,2,
4. FURTHER GENERALIZATION OF i-3~CONTINUITY.
Having defined 1-3 and 2-3-continuity for f: X, x X, x X, + T, we shall now

1 2 3
extend these ideas to a general case.

Namely, let n be an arbitrary natural number. We say that f function

n . n
£: 0 X, Tis A-n-continuous if for every (pys Pysev-s P) I, X, and for every

neighborhood U1 x U2 X L. X Un of (pl, Ppyseees pn) and for every neighborhood N of

f(pl, Pyseees pn) there are neighborhoods Ui,s (1 = s £ k) of the first k out of n

! < Ui and there are (n-k) nonempty open sets

i,s

k
' c < < n- [
with Vi,m Ui 1 £ m £ n-k such that for all (xl, Xyseees xn) € sgl 1} i,s x mgl Vi,m

we have f(xl’ Koy eees xn) € N.

points Py» Pys--es Py with U o kvi,m
Al

An interested reader will easily observe that the formula

k

I x k
—ki;l;-— ’ if z (Xi)k # 0
i1 (%9 =1

g;(xl, cees xk) =
0, otherwise
where f: R" > R describes a k-n-continuous function f given by
£(xps wees X)) = gp(Xps «oes X))y k=1, 2, 3, oo on-l.

One can also give analogues of Example 8 and 9 for k-n-continuity.

Studies of C(f) in hyperspaces for separately continuous functions and related
ones were done also in Bdgel [11] and Hahn [12].

5. A PARTIAL SOLUTION TO A PROBLEM OF M. TALAGRAND.

M. Talagrand ([13] Problem 3 p. 160) asked whether if X is Baire, Y is compact
and f: X X Y * R is any separately continuous function, is there the set C(f) of
points of continuity of f nonempty.

We shall answer this question in the positive if a compact space Y is additionally
f§inst countable.

In fact, we have shown the following result:

LEMMA 11. (Lee and Piotrowski [2], Lemma 2 p. 381). Let X be Baire, Y be first
countable and Z be regular. If f: X XY * Z is a function such that all its
x-sections fx are continuous with the exception of a first category set, and all its

y-sections f,, are quasi-continuous, then f is quasi-continuous with respect to y.

Y
It follows from the definition that

REMARK 12. Every quasi-continuous function with respect to y is quasi-continuous.
LEMMA 13. (Marcus [14]). Let X be a Baire, M be metric. If f: X + M is quasi-

continuous, then C(f), the set of point of continuity of f is dense G6 subset of X.
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PROPOSITION 14. Let X be Baire, Y be compact first countable and let
f: X Y -—=R be any separately continuous function. Then C(f) # O.

PROOF. By Lemma 11 and Remark 12 such f is quasi-continuous. Now, since the
Cartesian product of a compact space and a Baire space is Baire, we are done by

Lemma 13.
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