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ABSTRACT. A generalization of Redei functions to polynomial vectors in n
indeterminates over finite fields or residue class rings of integers 1is given by
considering special types of polynomial vectors. Properties such as polynomial
composition, change of basis, group structure and fixed points are studied together

with applications in cryptography.
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1. INTRODUCTION.

L. R;dei [1] introduced an interesting class of rational functions which give
rise to permutations of a finite field on substitution of the elements of the finite
field. More recently these functions were studied in detail for cryptographic
applications, see Lidl and M&ller [2]1, N;bauer [3-5]. Fried and Lidl [6] presented
a generalized version of R;dei functions by considering the ordered pair formed from
the numerator and denominator of a R;dei function and extending this approach to
polynomial vectors in n indeterminates over a finite field. In the following we shall
use a different approach to obtaining such polynomial vectors, which makes it possible
to study the vectors over finite fields as well as residue class rings of integers.
In section 5 we shall give a connection between the matrix definition used by Fried
and Lidl [6] and the definition which relies on bases used in this paper.

Let L be an extension field of a field K and {61,...,0n} be a basis of L over
K. Carlitz [7] and Lidl and Niederreiter [8, P. 375], showed how to obtain a
polynomial vector in n variables over K, given a polynomial over L. We define a

polynomial vector
f= () seensf)

based on the polynomial f € K[x],
where fi € K[xl,...,xn] are defined by

n n
f( Y v,8 )= z £,0,, and v, € K, 1 = 1,...,n. (1.1)
i=1 i1 i=1 i1 i ’ ’ ’
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Here £ depends on the polynomial f and the choice of basis of L over K. The
polynomial vector f reflects various properties of f which will be presented in the

following sections.

2. COMPOSITION PROPERTY.

Let O denote composition of polynomials or polynomial vectors. We use the
notation introduced in (l.1).
PROPOSITION 1. Suppose f,g,h € K[x] and h = f o g. If f,g,h are the

corresponding polynomial vectors according to (1.1), then

h=fog (2.1)

PROOF. We have

[N aerl=]

n n
né, =n( ] v,0)= £ 121 v,0,))

i=1 i=1

n n
=f(] g8 ) =1 £(g 000,80
L B T B8

and thus

hi = fi(glu--,gn)-

It can readily be seen that if f ranges over the elements of a set of polynomials
which are closed under composition, then £ ranges over the corresponding set of
polynomial vectors which are closed under composition of polynomial vectors. Specific
examples of sets of polynomials which are closed under composition are the set of
power polynomials S = {xkl € Z} and the set of Dickson polynomials

D= {gk(x,l)lk € Z}. For a definition of g, ve refer to Lidl and Niederreiter [8,
P.355].

3. CHANGE OF BASIS.

Since the definition of f in (1.1) depends on the basis 61,...,0n of L over K,
we would like to know the effect of changing the basis while keeping f fixed. Suppose
wl

,...,Wn is another basis of Lover K and let
6 = (91.---,9n), b= (¥5eee,¥)) and oF - MWT. We use the notation

]

n

-9 8 B, —v v
f = (fl,ooo,fn) N f' o= (fl,uoo,f )

and v = (vl""’vn)°
Then

£(vOD) = £(vaiyD)) = £C(¥D) = (E¥(w0 )T
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But

evoly = 86t = G awh = oyt

Since ¥ is a basis of L over K,

- -0
tewy = Toom.
Thus we have shown:
PROPOSITION 2. Let © and ¢ denote bases of L over K and fe,fw be the

polynomial vectors defined in (1.1) with a fixed polynomial f. Then
-8 -y -1
f (v) = £ (VWM)M , where M is the matrix relating 6 to V.

4, CONSTRUCTION OVER Z and Fp.

Suppose K = Q, L is an algebraic extension of Q of degree n and f € Z[x].
1f [61,...,9n} if_ a basis of L over Q, let eiej € 2[61,...,6n] for each 1i,j =
1,ees,n. Then f as defined in (1.1) will be an element of Z[xl,...xn] and therefore
can also be considered as a polynomial vector with integer coefficients mod

n, n € N.

A second approach is as follows. Let A denote the ring of algebraic integers of
K where {91,...,9n} is an integral basis for K then A = z[el,...,en]. If P is a
prime ideal of A and p € P for a prime p in Z, then when reduced mod P the polynomial
vector .; of (l.1) is defined over A/P and has coefficients in Pp.

Alternatively, in the construction of section 1, let K = Fq and L = Fqn. A
system of n polynomials in n variables is called orthogonal (or a permutation

polynomial vector) over Fa if on substitution of the elements of F: the polynomial

vector of n polynomials gives a permutation of the elements of F:, see (8, P. 368].
Every element of F n has a unique representation as Eviei. A polynomial
fe Fa[x] is a permutation polynomial of Fh if on substitution of the elements of
Fq the polynomial gives a permutation of F . Now we can state: _
PROPOSITION 3. The system of components fi of the polynomial vector f as defined
in (l.1) is orthogonal over Fq if and only if f is a permutation polynomial of FAn.

5. THE MATRIX APPROACH AND GENERALIZED REDEI FUNCTIONS.

This section is the central part of this paper, it represents a generalization of
the Redei funtion vectors of Fried and Lidl [6] in two ways: instead of power
polynomials xk we first let f(x) be arbitrary and secondly the underlying structures
are not necessarily finite fields. As in section 1 let L be an extension field of K
and let {91,...,9n} be a basis of L over K. The discriminant matrix of L over K with
respect to this basis is defined as the matrix D whose i,j entry is oi(ej). Here
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01,...,0n are the n embeddings of L into € that fix K, or the n isomorphisms of L
over K in the case that L is finite.

Let f € K[x] then we define f((xl,...,xn)) = (f(xl),...,f(xn)). let x =

xjoi(ej))T’ hence f(DxT) = (f( x.di(e ))T-

p 3 ]

T
(Xl""’xn)’ then Dx = (i

LN et~

e~ 3

1 i

Since f € K[x], 01 leaves f fixed, so

T n T 2 8, \\T
£(Dx") = (o, (£C | x,0,.))) = (o, (] £8.))
i j:i ji i j=1 33
.0 e T
= ( i fj(xl,...,xn) °1(9j)) .

j=1

But

il = (ff(xl,...,xn),...,f:(xl,...,xn))T

]

DCEO (kD)) = (] £

3

(]
Therefore we obtain the following definition of the polynomial vector f in terms of

(xl,...,xn) oi(ej))T = f(DxT).

the polynomial f and the discriminant matrix D of L over K:
— _
£2xT) = o le(oxT) (5.1)

We note that the square of the determinant of D equals the discriminant of

61,...,0n, which 1is nonzero. Therefore Dm1 is always defined. Now in order to
obtain the special case of Redei vectors presented in [6] we let

f(x) = x and {91,-..,9n} = {1,9,92,...,9n-1}, where L is a finite extension of

K = Fq. In this case we obtain the Redei function vectors similar to those defined
in Definition 2.2 of [6]. We call the corresponding vector of polynomials in n
variables defined in (5.1) above a generalized Redei (function) vector and denote it
by fz. In this case we note that the system of components of fe is orthogonal if
and only 1if (k,qn—l) = 1.

PROPOSITION 4. The Redei vector fz induces a permutation of P: if and only if
the exponent of the defining power polynomial f is coprime with qn—l. We give
explicit examples of Redei function vectors for n = 2 and n = 3 and K =F . Let

K q
f(x) = x &
EXAMPLE 1. Let n =2, K= !a, L= laz and (1,8} be a basis of L over K, where
Then the discriminant matrix D is of the form
q
D = (1 ] ) = (1 Z; )
1o 1 g
The definition (5.1) and the remarks below (5.1) give the following vector.

9 = Ya is a generator of F 2°
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;2 = %-((x + Ya y)k + (x - Ya y)k, 2 ((x + Va y)k - (x - Ya ¥)).
2va

This vector induces a permutation of Pﬁ iff (k,qz-l) = l. It corresponds to the
Redei function vector Ra " as defined in Fried and Lidl [3] in the case n = 1.
’
EXAMPLE 2. Let n=3, K = Pq, and 1,0,92 a basis of the extension L over Fq.

For k = 1 definition (5.1) yields ff = (xl,xz,x3). For k = 2 let

1 e 02
D= 1 e 029 |
2
1 ol 924

Then
] 2 1+q+q2 2 q 2
f2 = (x1 + 2x2x39 + x5 (6+07+6q°),
2 + 2 + 2 b
x;a X Xy X, X4b,
2 2 q q2
X, + X3¢ + 2xlx3 + 2x2x3(9+0 +67 )),
where

2 2 2 2
a=-(89 +09) (69 + 08) (69 + 0), b= —(6914ed *lypd *ay,
2 2. q2+q. 020, aqH], aqtl, o2
c = 8°q7+ 09 9499409 T4 e
in F .
q 3,2
Specifically, for q = 2 and 6 +6"+1 = 0 we obtain

. All the coefficients of the components of fg are

-9 2. 2 2 2. 2
1t X3 X3 %+ x5,

For q = 3 and 93 + 262 + 1 =0 we get

) 2 2 2 2
f2 = (x1 + XoXq + X3, 2x., + 2x + x, + 2x.x, + 2x2x

2
3 %20 *2 3 1*3 3)

and for q = 5 and 63 + 02 +2=0

] 2 2 2 2 2
f2 (x1 + X, %y + 4x_, 3x3 + 2xlx2, Xy + Xy + 2x1x3 + 3x2x3).

We recall composition properties from section 2 and note that if f is an element of a
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set of polynomials which induce a group G of mappings on F n’ then the coresponding
q
family of polynomial vectors f induces the ssame group of mappings on (Fq)n. It can
also be shown easily that the fixed points of f over Fq may be identified with the
fixed points of f over F n by using representation of (xl"°"xn) as | X, 0 in
’

F . q
n
q

6. REGULARITY AND POLYNOMIALS OVER Z

From the definition (5.1) of fe with respect to a given basis o we see that
(vl,...,v ) € K" is a zero of f if and only if l viei € L is a zero of f. Recall
that

f(% xiei) = E fi(xl,...,xn)ei.

Differentiating with respect to xj yields

. ) 8fi
f({xe)e — 0
Ix
ii i j i°
The map 2 3—1 ej defines a linear
%

transformation of L over K for fixed KpseeesX o If o= f'(Exiei) then this
transformation is the same as 6, * m6,. This map 1is invertible if and only if
m# 0. A different condition for invertibility is that the Jacobian determinant of
? is nonzero.
Thus we have of
PROPOSITION 5. f' vanishes on L if and only if the Jacobian determinant (3;1) is
zero. ]
Lausch and Nobauer [9] call a polynomial f € K[x] regular if f'(a) # O for all
a €K ., Lidl [10] generalized the concept of regularity to polynomials in several
variables. We can say that .; is regular if its Jacobian determinant is nonzero. Now
we consider the behaviour of the polynomial vectors ‘? with integer coefficients
modulo pe. We say that n polynomials in n variables form a permutation polynomial

vector mod p® if on substitution of elements of (Z e)n we obtain a permutation of
P

(z e)n° Then, based on results from [11] and [12], we have
P

PROPOSITIION 6. The following conditions are equivalent:
(1) f is a permutation polynomial vector mod pe, e > 1;

(1) .; is a permutation polynomial vector mod p and the Jacobian

deteminant of f is nonzero mod p;

(iii) f is a permutation polynomial of F n and f'(a) # 0 for all

a F o’ i.e. f is a regular permutgtion polynomial of F nt
P P
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If we specialize the polynomial f to be the power polynomial xk then the
corresponding polynomial vector ;; can be regarded as a generalized Redei vector with
integral coefficients. Since xk is regular only in the case k = 1 we cannot get any
non-trivial Redei permutation vectors mod pe, for e > 1, because of part (iii) in
Proposition 6. However, if f(x) is not a power polynomial but a Dickson polynomial
Ek(x,a) over K then Proposition 6 will yield permutation polynomial vectors
f mod pe, e > 1. This follows from the fact that there are regular Dickson
polynomials over X = FA, namely all those gk(x,a) for which (k, char Fq) = 1.
The Chinese Remainder Theorem enables us to generalize to residue class rings Zm'
PROPOSITION 7. Let f(x) be a Dickson polynomial gk(x,a) over Z, and let
r e
m =1 Py i, a # 0.
i=1
Then the polynomial vector ? as defined in section 4 for f(x) replaced by gk(x,a) is

a permutation polynomial vector mod m if and only if (k,v) = 1 where

2n
lcm {pi(pi - D},
1 <4ic<r
PROOF. The result follows from: the regularity of gk(x,a) over Fb'“ (see
i
Lausch and Nobauer [9] p. 209), gk(x,a) being a permutation polynomial of bn (see
i

[9, P. 209], the Chinese Remainder Theorem and Proposition 6.

7. APPLICATIONS IN CRYPTOLOGY.

Over the past few years there has been considerable interest in applications of
algebraic and number theoretic properties of polynomials to the design and anlaysis of
algebraic cryptosystems. Two of the most influential papers Diffie and Hellman [13]
and Rivest et all [14]; a brief survey of some cryptosystems based on finite fields
can be found in Lidl and Niederreiter [15, chapter 9]. Recently, a number of papers
consider the use of polynomials and rational functions in defining cryptosystem; in
particular, Muler and Nobauer [16, 17], Nobauer [18] study Dickson polynomial
cryptosystems and in Nobauer [3-5], Redei functions in one variable are used to define
cryptosystems over finite fields and residue <class rings of 1integers. Such
invesigations were not confined to polynomials in one variable. Muller and Nobauer
[17] and Lidl and Muller [2}, [19] introduced cryptosystems which are based on
polynomials in several variables. Here we show in examples that some polynomial
vectors ;, ?6 and ;: as defined 1in the previous sections can be wused for
cryptographic purposes.

EXAMPLE 3. Take the Redei function vectors ;: defined before Proposition 4.

These vectors can be used in a conventional cryptosystem over Fa, since they induce

(]

permutations of F: iff (k,q™1) = 1. For k = 1 the vector fl

induces the identity

mapping of Pz into itself and the inverse of the mapping fz is given by f:, where
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kk' = 1 (mod qn - 1). The secret key of a coanventional cryptosystem involving Redel

(¢]
function vectors is the parameter k. A message m € Fz is encrypted as fk(m) and

decrypted by ?i,(;i(m)) = ;?(m) = m.

EXAMPLE 4. Redei function vectors can also be used in no-key algorithms or three-
pass algorithms (see Lidl and Niederreiter [15], Nobauer [3,4]). The analogy with the
one-variable case of Redei functions or Dickson polynomials 1is straightforward,
therfore we omit the details.

EXAMPLE 5. The vectors f: can also be used in a Diffie-Hellman key distribution
scheme for establishing common keys (see Lidl and Niederreiter [15] p. 348, for a
description of the scheme introduced by Diffie and Hellman [13]; Muller and Nobuauer
[16], and Nobauer [3] contain details for schemes based on Dickson polynomials and
Redei functions, respectively). Suppose we have a communications network and a number
of users. First we choose a finite field F , a polynomial f € Fq[x], a basis

6 of Fqn over Fq and a vector c¢ € F: and make these known to all participants of the

network. every user U chooses a positive integer k(U) as a secret key and calculates

f:(u)(c) which is stored in a public file accessible to all other users. Two users A

and B of the network establish a common key as follows.
-0
1. A obtains fk(B)(c) from the public file;

2. A forms

b =0 =6
qu)(fMB%C» =fNAm(m(d;

—0
3. B gets fk(A)(c) from the public file;

4. B forms £, (£ () = fo ()

: ormS L) k(A€ k(B)k(A) ’*

The element fk(A)k(B)(c) = k(AB) is the common key for users A and B.

EXAMPLE 6. Proposition 4 and Proposition 7 enable us to define a public key
cryptosystem based on Redei function vectors mod m. Such a system is an RSA type
cryptosystem similar to those introduced in Lidl and Muller [2], Nobauer [3,4]. Let m
be the product of two primes Py and Py and let f(x) = xk. Then the Redei function
vectors ?k induce a permutation of Z'n iff (k, 1 cm {p? -1, p; -1}) = 1.

We denote 1 cm{p? -1, p; - Il’by Ve Then the 1inverse of the permutation

f : Zm e Zm is the permutation f, of Zm where k% = 1 (mod v). As in other

k 2
cryptosystems which are based on polynomials we take fk as he encryption function
fz as the decryption function, m and k as the public key and P, »P, OF % as the
private key. Note that by Proposition 7 we can only consider m to be a product of

primes and not prime powers. If, however, f(x) is a Dickson polynomial gk(x,a)
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then the corresponding Redeei function vector fk as defined by (5.1) can give a

permutation of Zm’ o= ey > 1, by Proposition 7, and can be used in a public-

key cryptosystem mod m. i
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