

## SOME FURTHER RESULTS ON LEGENDRE NUMBERS

PAUL W. HAGGARD

Department of Mathematics, East Carolina University  
Greenville, North Carolina 27858 U.S.A.

(Received February 12, 1987)

**ABSTRACT.** The Legendre numbers,  $P_n^m$ , are expressed in terms of those numbers,  $P_k^{m-1}$ , in the previous column down to  $P_n^m$  and in terms of those,  $P_k^m$ , above but in the same column. Other results are given for numbers close to a given number. The limit of the quotient of two consecutive non-zero numbers in any one column is shown to be -1. Bounds for the Legendre numbers are described by circles centered at the origin. A connection between Legendre numbers and Pascal numbers is exhibited by expressing the Legendre numbers in terms of combinations.

**KEY WORDS AND PHRASES.** Associated Legendre functions, bounds for the Legendre numbers, Legendre numbers, Legendre polynomials, limits of ratios of Legendre numbers.

**1980 MATHEMATICS SUBJECT CLASSIFICATION CODES.** 10A40, 26C99, 33A45.

### 1. INTRODUCTION.

The Legendre numbers were introduced in [1] and several elementary properties were given. In [2], some applications of the numbers were presented. Further applications are needed. In this note some relationships between the numbers are shown, bounds are given for the numbers, and the numbers are described in terms of combinations. For reference, we give (from [1]) the definition that we use, a general formula for the numbers, and a partial table of them.

**Definition 1.** The Legendre numbers,  $P_n^m$ , are the values of the associated Legendre functions,  $P_n^m(x)$ , for  $x = 0$  and  $m, n$  non-negative integers.

A general formula for the Legendre numbers is

$$P_n^m = \begin{cases} 0, & m + n \text{ odd} \\ 0, & m > n \\ \frac{n-m}{2} \\ \frac{(-1)^{\frac{m}{2}} (n+m)!}{2^n \left(\frac{n+m}{2}\right)! \left(\frac{n-m}{2}\right)!}, & m + n \text{ even, } m \leq n \end{cases} \quad (1.1)$$

Another result needed is that

$$P_n^m = P_n^{(m)}(0), \quad (1.2)$$

where  $P_n^{(m)}(0)$  is the  $m$ th derivative of the Legendre polynomial,  $P_n(x)$ , evaluated at  $x = 0$ .

### 2. SOME RELATIONSHIPS BETWEEN LEGENDRE NUMBERS.

Many relationships between Legendre numbers have been shown in [1], and [2].

Here, each Legendre number is expressed in terms of the non-zero entries in the previous column (see Table 1) down to this entry in two ways. Further, each is expressed in terms of the non-zero entries in the same column but above the entry.

| $n \backslash P_n^n$ | $P_n^0 = P_n^0$   | $P_n^1$           | $P_n^2$           | $P_n^3$          | $P_n^4$            | $P_n^5$            | $P_n^6$              | $P_n^7$ | $P_n^8$   | ... |
|----------------------|-------------------|-------------------|-------------------|------------------|--------------------|--------------------|----------------------|---------|-----------|-----|
| 0                    | 1                 |                   |                   |                  |                    |                    |                      |         |           |     |
| 1                    | 0                 | 1                 |                   |                  |                    |                    |                      |         |           |     |
| 2                    | $-\frac{1}{2}$    | 0                 | 3                 |                  |                    |                    |                      |         |           |     |
| 3                    | 0                 | $-\frac{3}{2}$    | 0                 | 15               |                    |                    |                      |         |           |     |
| 4                    | $\frac{3}{8}$     | 0                 | $-\frac{15}{2}$   | 0                | 105                |                    |                      |         |           |     |
| 5                    | 0                 | $\frac{15}{8}$    | 0                 | $-\frac{105}{2}$ | 0                  | 945                |                      |         |           |     |
| 6                    | $-\frac{15}{48}$  | 0                 | $\frac{105}{8}$   | 0                | $-\frac{945}{2}$   | 0                  | 10,395               |         |           |     |
| 7                    | 0                 | $-\frac{105}{48}$ | 0                 | $\frac{945}{8}$  | 0                  | $\frac{10,395}{2}$ | 0                    | 135,135 |           |     |
| 8                    | $\frac{105}{384}$ | 0                 | $-\frac{945}{48}$ | 0                | $\frac{10,395}{8}$ | 0                  | $-\frac{135,135}{2}$ | 0       | 2,027,025 |     |
| ...                  | ...               |                   |                   |                  |                    |                    |                      |         |           |     |

TABLE 1. LEGENDRE NUMBERS

From the known result, see [3],

$$P_n^m(x) = \sum_{k=1}^{\lfloor \frac{n}{2} \rfloor} (2n - 4k + 3) P_{n-2k+1}(x), \quad (2.1)$$

where  $\lfloor \frac{n}{2} \rfloor = \frac{n}{2}$  is  $n$  is even and  $\frac{n+1}{2}$  if  $n$  is odd, it follows that by taking  $m - 1$  derivatives then using (1.2), one has

$$P_n^m = \sum_{k=1}^{\lfloor \frac{n-m+1}{2} \rfloor} (2n - 4k + 3) P_{n-2k+1}^{m-1}, \quad m, n \geq 1. \quad (2.2)$$

This gives each Legendre number,  $P_n^m$ , as a sum of products involving the Legendre numbers in the preceding column of Table 1 and above  $P_n^m$ . Other such formulas are possible. Four that can be proved (mathematical induction, inducting on  $n$  is one way) are:

$$P_{2n}^{2m} = (-1)^{n-m} (4m-1) \sum_{k=m}^n \left| P_{2k-1}^{2m-1} \right|, \quad (2.3)$$

$$P_{2n+1}^{2m+1} = (-1)^{n-m} (4m+1) \sum_{k=m}^n \left| P_{2k}^{2m} \right|, \quad (2.4)$$

$$P_{2n}^{2m} = \frac{(-1)^{n-m} (4m+1)}{2(n-m)} \sum_{k=m}^{n-1} \left| P_{2k}^{2m} \right|, \quad n > m, \quad (2.5)$$

$$P_{2n+1}^{2m+1} = \frac{(-1)^{n-m} (4m+3)}{2(n-m)} \sum_{k=m}^{n-1} \left| P_{2k+1}^{2m+1} \right|, \quad n > m. \quad (2.6)$$

Note that (2.3) and (2.4) give each Legendre number as a product that involves the sum of the absolute values of the entries in the previous column and above the entry of Table 1 specified. Similarly, (2.5) and (2.6) involve the entries in the same

column but above the entry. Equations (2.4) and (2.6) can be obtained from (2.3) and (2.5), respectively, by replacing  $2n$  with  $2n + 1$  and  $2m$  with  $2m + 1$ . In fact, (2.3) and (2.4) can be combined as

$$P_n^m = (-1)^{\frac{n-m}{2}} (2m+1) \sum_{k=1}^{\frac{n-m+1}{2}} \left| P_{n-2k+1}^{m-1} \right|, \quad (2.7)$$

while (2.5) and (2.6) can be combined as

$$P_n^m = \frac{(-1)^{\frac{n-m}{2}} (2m+1)}{n-m} \sum_{k=1}^{\frac{n-m}{2}} \left| P_{n-2k}^m \right|, \quad (2.8)$$

for  $m$  and  $n$  of the same parity.

There are several results concerning entries in Table 1 that are near each other. These can be easily proved using properties of Legendre numbers or by using (1.1). For example,

$$P_n^m = \frac{P_{n-1}^{m+1} + P_{n+1}^{m+1}}{2m+1}, \quad n \geq m+2 \quad (2.9)$$

gives each entry in terms of the entries in the next column and just above and below. Each entry in terms of the entries in the previous column and just above and below is given by

$$P_n^m = -\frac{(n+m-1)(n-m+2)}{2m-3} (P_{n-1}^{m-1} + P_{n+1}^{m-1}), \quad n, m \geq 1. \quad (2.10)$$

Considering  $P_n^m$  and the nearest entries on slant lines through  $P_n^m$  leads to a determinant type result,

$$P_{n-1}^{m-1} P_{n+1}^{m+1} - P_{n-1}^{m+1} P_{n+1}^{m-1} = \frac{2(2n+1)}{(n+m-1)(n-m+2)} (P_n^m)^2. \quad (2.11)$$

Next, if we look at a particular non-zero entry and consider the first four non-zero entries above, below, to the left, and to the right, we have

$$P_{n-2}^m P_{n+2}^m - P_n^{m-2} P_n^{m+2} = 0, \quad n \geq 4, \quad 2 \leq m \leq n-2 \quad (2.12)$$

which one can express as above  $\cdot$  below = left  $\cdot$  right.

In [1], it was shown that the sum of the non-zero entries in any column of Table 1 converges. The limit of the ratio of consecutive entries is somewhat surprising.

Choose the  $m$ th column of Table 1. For  $n+m$  even and using (1.1), we have

$$\frac{P_{n+2}^m}{P_n^m} = -\frac{n+m+1}{n-m+2} = -\frac{1 + \frac{m}{n} + \frac{1}{n}}{1 - \frac{m}{n} + \frac{2}{n}}. \quad (2.13)$$

Therefore,

$$\lim_{n \rightarrow \infty} \frac{P_{n+2}^m}{P_n^m} = -1. \quad (2.14)$$

From (2.13) it is clear that the limit approaches  $-1$  from the right for  $m = 0$  and from the left for  $m \geq 1$ . It is clear that the limit of the absolute value of the ratios is  $1$ .

## 3. BOUNDS FOR THE LEGENDRE NUMBERS.

From the known bound from [3],

$$|P_n(x)| < \left[ \frac{\pi}{2n(1-x)} \right]^{\frac{1}{2}}, \quad (3.1)$$

for the Legendre polynomials,  $P_n(x)$ , one has, for  $x = 0$

$$|P_n| < \sqrt{\frac{\pi}{2n}} = \frac{\sqrt{2\pi n}}{2n} = \frac{\sqrt{C}}{D} = \frac{\pi}{\sqrt{C}}, \quad n \geq 1 \quad (3.2)$$

where  $C = 2\pi n$  is the circumference of a circle of radius  $n$  centered at the origin with  $D = 2n$  the diameter of the circle.

In [1], the relationship

$$P_n^m = (n+m-1)(n+m-3)\cdots(n-m+3)(n-m+1)P_{n-m}, \quad m \geq 1 \quad (3.3)$$

was given where  $P_{n-m}$  is in the first column of Table 1. Using (3.2) in (3.3) we have the more general result

$$|P_n^m| < (n+m-1)(n+m-3)\cdots(n-m+3)(n-m+1) \frac{\sqrt{C}}{D}, \quad m \geq 1, \quad n > m, \quad (3.4)$$

where  $C = 2\pi(n-m)$  is the circumference of a circle of radius  $n-m$  centered at the origin with  $D = 2(n-m)$  the diameter of the circle.

## 4. LEGENDRE NUMBERS IN TERMS OF COMBINATIONS.

In [2], combinations were expressed in terms of the Legendre numbers. Here, we express the Legendre numbers as combinations. The equation

$$C(q, i) = \frac{(-1)^i q! 2^i P_{q+i}^{q-i}}{(q-i)! P_q^q}, \quad i = 0 \text{ to } q \quad (4.1)$$

from [2] becomes

$$P_n^m = \frac{\frac{n-m}{2}! \frac{n+m}{2}! C(\frac{n+m}{2}, \frac{n-m}{2})}{\frac{n-m}{2}! \frac{n+m}{2}!}, \quad (4.2)$$

after solving for  $P_{q+i}^{q-i}$  then letting  $n = q + i$  and  $m = q - i$ . Notice that  $\frac{n-m}{2} = i$  and  $\frac{n+m}{2} = q$ . Since  $P_n^n = 1 \cdot 3 \cdot 5 \cdots (2n-1)$ , see [1],

$$\begin{aligned} P_{\frac{n+m}{2}}^{\frac{n+m}{2}} &= 1 \cdot 3 \cdot 5 \cdots (n+m-1) \\ &= \frac{(n+m)!}{\frac{n+m}{2}! \left(\frac{n+m}{2}\right)!}. \end{aligned} \quad (4.3)$$

Substituting (4.3) into (4.2) gives

$$P_n^m = \frac{(-1)^{\frac{n-m}{2}} m! (n+m)!}{2^n \left[ \left( \frac{n+m}{2} \right)! \right]^2} C\left(\frac{n+m}{2}, \frac{n-m}{2}\right) \quad (4.4)$$

for  $n > 0$ ,  $m$  and  $n$  of the same parity, and  $m \leq n$ . The remaining values of  $P_n^m$  are given in [1] as  $P_0^0 = 1$  and  $P_n^m = 0$  for  $m$  and  $n$  of different parity.

## REFERENCES

1. HAGGARD, P.W. On Legendre Numbers, International Journal of Mathematics and Mathematical Sciences, Volume 8, No. 2 (1985) 407-411.
2. HAGGARD, P.W. Some Applications of Legendre Numbers, International Journal of Mathematics and Mathematical Sciences, (to appear).
3. RAINVILLE, E.D. Special Functions, The Macmillan Company, New York, 1960.
4. COPSON, E.T. An Introduction to the Theory of Functions of a Complex Variable, Oxford University Press, London, 1935.
5. RICHARDSON, C.H. An Introduction to the Calculus of Finite Differences, C. Van Nostrand Company, Inc., New York, 1954.

## Special Issue on Time-Dependent Billiards

### Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

|                        |                  |
|------------------------|------------------|
| Manuscript Due         | December 1, 2008 |
| First Round of Reviews | March 1, 2009    |
| Publication Date       | June 1, 2009     |

### Guest Editors

**Edson Denis Leonel**, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil ; [edleonel@rc.unesp.br](mailto:edleonel@rc.unesp.br)

**Alexander Loskutov**, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; [loskutov@chaos.phys.msu.ru](mailto:loskutov@chaos.phys.msu.ru)