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ABSTRACT. The Legendre numbers, P:, are expressed in terms of those numbers, P: .

in the previous column down to P: and in terms of those, 3 above but in the

s
same column. Other results are given for numbers close to a Ziven number. The limit
of the quotient of two consecutive non-zero numbers in any one column is shown to be
-1. Bounds for the Legendre numbers are described by circles centered at the origin.
A connection between Legendre numbers and Pascal numbers is exhibited by expressing

the Legendre numbers in terms of combinations.
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1. INTRODUCTION.

The Legendre numbers were introduced in [1] and several elementary properties were
given. In [2], some applications of the numbers were presented. Further applications
are needed. In this note some relationships between the numbers are shown, bounds are
given for the numbers, and the numbers are described in terms of combinations. For
reference, we give (from [1]) the definition that we use, a general formula for the
numbers, and a partial table of them.

Definition 1. The Legendre numbers, P:, are the values of the associated Legendre
functions, P:(x), for x =0 and m, n non-negative integers.

A general formula for the Legendre numbers is

fO, m+ n odd

m O, m>n
n n-m (1.1)

t(-1) 2 (n + m)!

m+n even, m < .
LG(n;m)!(n;m)! ’ ’ <n

Another result needed is that

m _ ,(m) .2
Pn B P\'(l (0)’ (l )

where P(m)(O) is the mth derivative of the Legendre polynomial, Pn(x), evaluated
n

at x = 0.
2. SOME RELATIONSHIPS BETWEEN LEGENDRE NUMBERS.
Many relationships between Legendre numbers have been shown in [1], and [2].
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rme of the non-zero entries in the pre-

h Legendre number is expressed in te
e y Further, each is expressed

vious column (see Table 1) down to this entry in two ways.

entry.
in terms of the non-zero entries in the same column but above the ry

p? 0 1 2 3 4 5 6 7 8
~ = .
n " Pn Pn Pn P Pn Pn P P Pa Pn
0 1
1 0 1
2 -% 0 3
_3
3 0 2 15
3 15
4 3 o -5 0 105
5 0 L o 12 945
15 105 945
6 ~%8 0 5 0o - 2 0 10,395
. o _;%% 0 9_22 0 H:_gﬁ 0 135,135
s | Lo 0o -%5 o 10395 o 15,13 0 2,027,025

TABLE 1. LEGENDRE NUMBERS

From the known result, see [3],

n
1
' = -
Pix)= ] (n-dk+p 0, 2.1
k=1
n n n+l
where [EJ =3 is n 1s even and > if n 1is odd, it follows that by taking m ~ 1
derivatives then using (1.2), one has
(2t
o -
P = kzl (2n - 4k + 3.)1’n 2k+1, m,on>1. (2.2)

This gives each Legendre number, P:, as a sum of products involving the Legendre
numbers in the preceeding column of Table 1 and above P:. Other such formulas are

possible. Four that can be proved (mathematical induction, inducting on n 1is one way)

are:

n-m 2m—l

Zn = 1) (4m-1) E 2k-1l’ (2.3)
k=m
2m+l n-m
Poney = DT Gm + 1) L Zkl (2.4)
k=m
DY )

2n 2(aom) 5 , 1 >m , (2.5)
p2mtl _ (-1 P04t 3) putl
Pontl =7 2(ocm) Powtr|> ™ > @ (2.6)

Note that (2.3) and (2.4) give each Legendre number as a product that involves
the sum of the absolute values of the entries in the previous column and above the

entry of Table 1 specified. Similarly, (2.5) and (2.6) involve the entries in the same
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column but above the entry. Equations (2.4) and (2.6) can be obtained from (2.3) and
(2.5), repectively, by replacing 2n with 2n+ 1 and 2m with 2m + 1. In fact,

(2.3) and (2.4) can be combined as

n-mrtl
e L
P = (-1) 2(2111-1),‘(‘2.1 P::2k+1|, @.n

while (2.5) and (2.6) can be combined as

n-m n-m

2 2
po o (1) 7 (2mHl) P " (2.8)
n n-m k=1 | D2k

for m and n of the same parity.
There are several results concerning entries in Table 1 that are near each other.

These can be easily proved using properties of Legendre numbers or by using (1.1). For

example,
1 mt1
+ P
m _ “n-1 n+l
Pn ~mF1 n>m+2 (2.9)

gives each entry in terms of the entries in the next columm and just above and below.
Each entry in terms of the entries in the previous column and just above and below is
given by

o o (n+m-1) (n-m+2) (Pm-l +

m-1
n 2m - 3 n-1 T Pn4p)s M m > 1. (2.10)

Considering P: and the nearest entries on slant lines through P: leads to a deter-

minant type result,
m-1_m+l mtl om-1 2(2n+1) m, 2
Pn-an+1 n—lpn+1 (h+m-1) (n-m+2) (Pn) : (2.11)
Next, if we look at a particular non-zero entry and consider the first four non-
zero entries above, below, to the left, and to the right, we have

m . m Pm—2Pm+2 -

BoPuso B By 0, n>4, 2<m<n-2 (2.12)

which one can express as above ¢ below = left + right.
In [1], it was shown that the sum of the non-zero entries in any column of Table 1
converges. The limit of the ratio of consecutive entries is somewhat surprising.

Choose the mth column of Table 1. For n + m even and using (1.1), we have

m m, 1
Pov2 _ mtw1__ 1tnth (2.13)
oo n-m2 1By 2" :
n n n
Therefore, m
P
lim 2., (2.14)
m
n-e Pn

From (2.13) it is clear that the limit approaches -1 from the right for m = 0 and
from the left for m > 1. It is clear that the limit of the absolute value of the

ratios is 1.
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3. BOUNDS FOR THE LEGENDRE NUMBERS.
From the known bound from [3],

1
. 2
an(x)l < [:m] N (3.1)
for the Legendre polynomials, Pn(x), one has, for x =0
T _/2m _ /L _ _m
2l </ = " 5 @22t (.2)

where C = 2mn 1is the circumference of a circle of radius n centered at the origin
with D = 2n the diameter of the circle.
In [1], the relatiomnship

=mmdMMW$u4mmﬁmmﬂwmwmil (3.3)

was given where Pn—m is in the first column of Table 1. Using (3.2) in (3.3) we have

the more general result
|27 < (ntw-1) (nim=3) - - - (n-m+3) (n—ml)/—g, m>1, n>m, (3.4)

where C = 2m(n-m) is the circumference of a circle of radius n - m centered at the
origin with D = 2(n-m) the diameter of the circle.
4. LEGENDRE NUMBERS IN TERMS OF COMBINATIONS.

In [2], combinations were expressed in terms of the Legendre numbers. Here, we

express the Legendre numbers as combinations. The equation

niq2ted]
IR v

C(q,1) = i i=0 to q (4.1)
- i)!P
(q ) q
from [2] becomes
n-m n+m
2, 2 ntm n-m
(-1) " m! Pn+ln C(—E— ———0
P - Lo , (4.2)
n+m. 2
G2

after solving for P:;i then letting n=q+1i and m=q - i. Notice that

B -3i and nim q. Since P: = 1+3+5¢+¢(2n-1), see [1],

2 2
ntm
2 = . . o0 —
Pn+m = 135 (n+m-1)
2 (n + m)!
= (4.3)
otm
2 n + m,,
2 (——5——0.
Substituting (4.3) into (4.2) gives
n-m
2
mo CL__ni(em)! oadm oo, (4.4)

n 2T i ) )2
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for n >0, m and n of the same parity, and m < n. The remaining values of P:

are given in [1] as P

O=

0 1 and P: =0 for m and n of different parity.
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