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ABSTRACT: The present work is concerned with a simple transformation rule in finding
out the composite elastic coefficients of a thinly layered laminated medium whose bulk
properties are strongly anisotropic with a microelastic bending rigidity. These
elastic coefficients which were not known completely for a layered laminated struc-
ture, are obtained suitably in terms of initial stress components and Lame's constants
A

u. of initially isotropic solids. The explicit solutions of the dynamical

i’ i
equations for a prestressed thinly layered laminated medium under horizontal
compression in a gravity field are derived. The results are discussed specifying the
effects of hydrostatic, deviatoric and couple stresses upon the characteristic propa-

gation velocities of shear and compression wave modes.

1.  INTRODUCTION

Biot [1] has indicated that some of the basic properties of anisotropic elastic
media are provided by analyzing a laminated medium superposed of thin adhering layers
which are alternately hard and soft. He also suggested that an equivalent continuous
anisotropic elastic medium can approximately be used to provide useful insight into
some of the basic features of the statical or dynamical problem of elasticity. The
validity of such an approximation is based upon the fact that rigidity contrast of the

layers is not too large, and that the thickness of the layers remains sufficiently
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small with respect to the wavelength of the displacement field. Such approximation
depends also on the type of problem considered and in many cases it requires some
additional refinements.

In a classic work on the theory of deformation of anisotropic elastic solids,
Biot [2] suggested that a skin effect is associated with anisotropy. He showed that
near a free surface or a surface of discontinuity certain components of the stress
field vary rapidly from zero to a maximum value within a thin skin. The concentration
of stress also occurs where certain stress components are amplified with the skin
thickness. In order to make an additional refinement of his theory, Biot [3] has
proposed the effect of couple stresses in elasticity and viscoelasticity of an
initially stressed anisotropic solids. He showed that this theory is intended to
provide an approximate continuous model valid over a wide range for the mechanics of
layered laminated media. This theory when applied to a wide variety of geological
structures provides remarkably simple and useful results, and hence can be used for a
better understanding of the involved physical features.

When a laminated medium of compressible material is replaced by a continuous
medium of anisotropic properties, Biot's [1] analysis gives the composite elastic
coefficients. This study is found to be somewhat similar to that used by Postma [4],
and also to that considered by Helbig [5] in the theory of acoustic propagation in a
laminated medium composed of layers of isotropic materials and is initially stress
free. The laminated medium is obtained by superposition of thin adherent layers which
are assumed to be alternately hard and soft. In these studies, Biot [1] obtained
elastic coefficients in terms of the unknown individual material coefficients after
deformation. Recently, Tolstoy [6] has made some slight modifications of Biot's
formulation and then obtained simple explicit solutions of the dynamical equations for
a prestressed isotropic homogeneous solid under horizontal compression in a gravita-
tional field.

In spite of the above progress, several problems concerning the propagation of
elastic waves in a thinly-layered laminated medium with stress couples under initial
stresses remain fully or partially understood. This paper is intended to address some
of these problems.

The main purpose of this paper is to discuss how to obtain the composite elastic
coefficients after deformation in terms of Lame's constants and prestress components
of the individual layers before deformation. After determination of such coeffi-

cients, an attempt is made to find the explicit solutions of the dynamical equations
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for a pre stressed thinly-layered laminated medium under horizontal compression in a
gravitational field. The bending rigidity of the laminated medium is also taken into

account by introducing stress couples.

2. BASIC ASSUMPTIONS AND STRESS-STRAIN RELATIONS

We consider a thinly laminated medium composed of thin adhering layers which are
alternately hard and soft. These hard and soft materials occupy, respectively,
fractions & and oy of the total thickness. If the rigidity contrast of the layers is
not too large, and if the layer thickness remains sufficiently small with respect to
the wavelength of the deformation field, then such a layered medium behaves approxi-
mately 1like an elastic continuum with anisotropic properties even though the
individual layers may be isotropic.

We consider the case of a compressible material. The stress-strain relations for

‘the composite medium are

ti1 = C1 80t Cp2 ey (2.1)
to = Cip ek * Cop &y (2.2)
t12 = 2L eey (2.3)

where L is the composite slide modulus. Due to compressibility the strain component

eyy is not the same in each layer. However, €

materials. The normal stresses in the hard material and (Biot [1], page 190),

and t22 remain the same in both

tg%) =91 &« * b1 e§§) (2.4)

t2 *h &t G e§;) (2.5)
For the soft material, the normal stress components are

t8) =y e, b, eﬁi) (2.6)

toy = b2 ey * Co e§§) (2.7)
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The average stress e is
o =(Jll,e(),tmzey (2.8)
The average strain t1y is
th Ty t{i’ oy tﬁ) (2.9)

The composite elastic coefficients Cij in equations (2.1)-(2.3) now obtained by
eliminating the four variables t(l), (2), (1) (2) i i

g e 11 t11 eyy s eyy from the six equations
(2.4)-(2.9). They are

2
a,0,(b, - b,)
. 1%2%°1 = %
R I R N (2.10)
asb.c, + a,b,c c,C
2 M101% T %% 1
Cyp = , e 2.11ab
12 a1Cy + a,0y 22 a9Cy + a,Cy ( )
and
a a
L= 1“[%*?2) (2.12)

For convenience we also define the alternative stress components tij (Biot [1], page

61)
t11 = 511 % 511 4y - 512 Gy (2.13)
tho = Spp * Spp Exy < S1p By (2.14)
i, = 5., + 5 S (eLte. ) - & (5,,45,,)e (2.15)
12 12 7 7 P12V xx tyy! T Z V1170227 %xy :

3.  THE HARD AND SOFT INITIALLY ISOTROPIC MATERIALS
We assume that the acceleration due to gravity points downward and the medium

lies in the space y < 0. The external gravitational field has the components

(0, 'g, 0).
The principal initial stress components are
1
Sj7 = =Py *+ o
u ! ¥ (3.1ab)

1
S22 = P
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The relations between initial stress and initial strain give

1 .
1 (q*2u)S14-455

g (3.2ab)
11 4111()\1"'1-‘1)
1
S Wo Ul i et
22 4U1()\1+U1)

The existence of initial stress introduces anisotropy defined by the elastic coeffi-

1

cients Bi' (>2). These elastic coefficients will be functions of the Lame constants

J
1

As My of the isotropic unstressed state and the prestrains €5 In linear approxi-

mation following Biot (Ref. [1], page 111) we can write

1 1 1
B11 = (2u1+)\1)(1+£11-922) (3.3)
1 _ 1 1
Boz = (2uy#h) (Tregpeyy) (3.4
1 _ 1
Bl2 =M1 - 511 (3.5)
R A TR RO (3.6)
Y
5128,
!
VinTtially 7sotropic materias fndvced onisafropic materials |
(( After Suitable by
3 ve s gl
C deformation WSS | anisctropic
s material
S“WM
a. Thinly /ayered laminated b. Layered structure & Eguivalent anisotropic
mediuvm composed of hard after deformation continuum .
and seft materials.

F/:y. l i Geometry of Zhe problem .

Using (3.2ab), equations (3.3)-(3.6) become

511-53,

1 _

By = (2uphg) (1 + —=5=) (3.7)
1 1
Soo=S

Bl - 22 "11 (3.8)

22 = (2111+A1)(1 + 2‘11-—)
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1 1

Bi2 =2 - 511 (3.9)
1
Q =u*g (5%1*5;2) (3.10)
11 11 )
Also Bi1 = G110 Byp = Cyp + Py - ey9ys
11 1
B31 = Clp - o1qy = Blz - Py (3.11abc)

1 ) 1 1
Co2 =By QU =Ly -7 P+ 500y

1 1
or Blp = 21> Byp = by +Pp-opg0y
Bl. = b, - =Bl -p (3.12abc)
21 7 P11 - =B - h .
1 1

) 1 1
Bp=¢» A=l -zPt70%

Hence, from (3.1ab), (3.7)-(3.10), and (3.12abc), it follows that

Pl
g2 (1 - 725),

o
1

N (3.13abcd)

P
Cl = (Zul*xl)(l + 2‘11_1)

-
1]

1 M

Following exactly the above derivation the elastic coefficients for the soft

material are obtained as

P,
o = g1 - 22

b, = Ay (3.14abcd)
P2
Cz = ()\2+2u2)(1 + zu—z)

Ly = wp
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4. THE COMPOSITE ANISOTROPIC MATERIAL
Using relations (2.10)-(2.11ab), (3.13abcd) and (3.14abcd) we obtain the

composite elastic coefficients

p p
. 1 2
Crp = o Opr2u) (1 - 70+ aplgr2up)(1 - 5

40

N N WML (4.13)

Cp =k L0 2u) (1 + 22 )apny + (2uea )1 + 2 (4.1b
12 g LWt 2, a1l N 2] aph,) -1b)

1 P Py
sz = ¢ [(}\1+2U1)(>\2+2H2)(1 + '2';‘{)(1 + WZ)] (4-1(:)
a a
L= 1/(;% + ;%) (4.1d)
and
Py P
K = ul(kz"‘Zuz)(l + -zu—z) + az(ll"‘Zul)(l + Eﬁ) (4.1e)

5.  FORMULATION OF THE PROBLEM FOR THE COMPOSITE MATERIAL

The average initial stresses in the x and y directions are

- 1 2
S11 % @1 311 *ep S7p = - P+ egy

(5.1ab)

Syp = aj Suy + a, S5, =

22 T a1 222 T ap dpp T 09y
where P = alpl + azPZ and o = agpq ¥ agpy (5.2ab)
It follows from (2.13)-(2.15) that

typ =St (-P+pgy)eyy

typ = Spp * 09y &y (5.3abc)

1
ti = s12 - (- 7 Progy) e,

From (2.1)-(2.3) and 5.3abc) equating t's we get after simplification,
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117 B11 %xx * B2 Gy
S22 = Bap €xx * B2z &y (5.4abc)
S12 = 2Q exy

where B11 = Cll’ 812 = c12 + P - ogy
Byy = Cip ~p9y = Bpp - P (5.5abc)
Byp = Cpp» Q=1L - TP+ o0y

where C's are given by (4.1abcde).

6. COUPLE STRESS ANALOGY
If the hard layer is sufficiently stiff a couple stress of moment M per unit area
is produced in the plane normal to the x axis. In this case t12 # t21. Equilibrium

of moments for an element of material requires the condition

_ oM
12 -t 7 (6.1)

I1f we now introduce the effect of couple stress, the equilibrium equations are

obtained as (Biot [3])

at at 2
11 12 _  3°u
o thy P2 (6.2)
at
at at 2 2 2
12 22 3V 3’v, M
=+t —==0p + P + (6.3)
R N S e
The value of the moment M in terms of the deformation is obtained as (Biot [3])
2
M=b2Y (6.4)
e

where the couple stress coefficient is

_1,2
b= 31" e Gy M) (6.5)
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with h = h

1 2°
My = gz (a5¢;-5%)
1 2 P} 2
= — [(A#2u)° (1 - =5) - 28], §=1,2. (6.6)
4021+ 5) w0
1

When one layer is much more rigid than the other the couple stress coefficient has the

simple value
M  with M= M1 oy (6.7)

7. GOVERNING DYNAMICAL EQUATIONS AND THEIR SOLUTIONS
In view of (5.3abc)-(5.4abc), equations (6.2)-(6.3) become

2 2 2
U IV ] U
c BAY 4+ 2¥- (7.1)
11 axz axay ayz atz
2 2 2 4
9V 9V 3V 9V 9V
c +BLY 4 (Lp) AV =Y Y (7.2)
22,2 " 3xdy e atl ot
where B =C.+LandL=0Q+5-1gy (7.3ab)
12 T-79% .

It is noted that the effect of the buoyancy terms in equations (7.1)-(7.2) is
appreciably smaller than that of pre-stressed values for a period of half a minute or
less. In dealing with seismic wave problems, we can neglect the buoyancy terms in
(7.1)-(7.2) compared with the pre-stressed terms. Using now (5.5abc) and neglecting

the buoyancy terms in the above equations, it turns out that

2 2 2 2
3 u 3 9V 1 U _  3u
Bzt Bz - 7P 5y * @4z P g =0 7 (7.4)
y at
2 2 2 2 4
TV 3 3V 3 3°u 3"V IV
B +(Q-3P) + (B ,#Q - 3 P) === =0 +b (7.5)
22 ayf 17752 12 T "/ 3xay atl ar
we next introduce the classic potentials ¢, y defined by
U= 6y - by, and v o= g+, (7.6ab)

In view of (7.6ab), equations (7.4)-(7.5) assume the form
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3
Bll(¢xxx'¢yxx) * (BIZ "3 P+Q)(""yyx‘t‘pxxy)

1 -
+ (Q + 1 P)(¢xyy"l‘yyy) = D(¢xtt'wytt) (7-7)
Byploy b ) + (-3 P) oyt ) + (Bt = 3 PY oy ~byyy)
12 ¢yy_y Xyy 3 YXX TXXX 12 7 XXy Tyyx
N °(¢ytt+tht) * buﬁlxxxx“"xxxxﬂ (7.8)
For some interesting solutions we take the trial functions as
¢ = ¢(alx+Blytc1t) (7.9)
v = ¢(azx+b2ytc2t) (7.10)
Assuming now a pure shear wave travelling in the x-direction, we set
¢ =0, 3y = 1, b2 =0, ¢ = w(xtczt) (7.11)
Then u=0, v-= by (7.12)
and
Y = (@-3P -0 B/ (7.13)

Thus when the functional form of y is known then (7.13) corresponds to a shear mode of
the SV type (u = 0) propagating in the S11 i.e. x-direction, with velocity cy-
In general, for plane harmonic waves along the x-direction, we write
v = exp[i(xtczt)] (7.14)
Then, from equation (7.13), we obtain

ng = (0+b - % P)/o (7.15)

Evidently, the shear wave velocity, Cox depends on the initial stress, couple stress

and hydrostatic stress.
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Likewise a shear wave travelling in the vertical y-direction corresponds to
=0, 2a,=0, b,=1, ulycyt) (7.16)
Then it follows from (7.7)-(7.8) that the shear wave velocity is
¢z, = (@P/8)/p (7.17)

In this case of shear waves travelling in the y-direction, there is no effect of
couple stress.

We also note

2 2 _ 2
Csy - Coy = cS(P-b)/Q (7.18)

For pure compressional modes, we take
¥=0, 3 =1, b =0, ¢-= ¢(xtc1t) (7.19)
so that the wave velocity is

[
Cox = Byq/p (7.20)

In the case of harmonic waves the velocity also remains the same.

Likewise there exists a pure P-mode travelling in the vertical direction,
31 =0, bl = 1' ¢ = ¢(yic1t)

In view of equation (7.8), we have

2 _
pr = Bzz/p (7-21)
and hence
B,,-B
2 2 _ 2211
“py ~ “px 0 (7.22)
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As in the case of a single isotropic layer (Tolstoy [6]) there are however, apart from
the principal axes of pre-stress, two further conjugate directions for which uncoupled
i.e. pure modes of shear of the pre-stress field occur.

We assume
v =0, ¢ = ¢(a xtbyysc,t),
where
3 = sin 8, b1 = CoS 6

It turns out that

+(B -P/2+zo)b§

a
- P11°1 : (7.23)

and

tanZe = —{mtn) + [(M-n)2+4mr)]1/2 (7.24)

where

M= (Byy-B),-20+P/2), n = (B),#2Q - 3 P-B);), = (7.25ab)

<o

A similar uncoupled solution exists for shear modes. We assume the solutions as

=0, y-= w(a x+b +c2t) (7.26ab)
where

a, = sing. b, = cos o (7.27ab)
Setting

i(a x+b,ytc,t)
v=e 272 s a, = sing , b, = cos ¢
2 2

We obtain

2 _ 25 (Byy-Byp + 3 P-0) + (0 + D))

<5 5 (7.28)

and
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2 -8+ (8i-anny)t?
tan“e = K (7.29)
"2

where
_ 1 _ _ 3
Al = 822 - B12 - 2Q + 3 P, B1 = 822 - B11 - P, A2 = B12 'Bll +b+2Q - 3 P (7.30abc)

Thus we obtain explicit expressions for the effects of hydrestatic stress, deviatoric
stress and couple stress upon the characteristic propagation velocities of shear and
compression modes by using equations (7.15), (7.17), (7.20) and (7.21) with relations

(4.1) and (5.5abc);

cix = % (L+b-P + % ogy) (7.31)
c2y =3 (L + 3 y00) (7.32)
P P a,a
¢t = 2 Loy (rpr2u) (1 - ?%i) + ay(ag*2u,) (1 - 2%;) - 2 ()8 (7.33)
2 = L [(ay+2u0) (A,*2u,) (1 + 1 )(1+ "2 1 (7.38)
Coy T K LM Fer/pten, Zuy Zu, .
P, P
where K = al(lz+2u2)(l + Zﬁz) + az(kl+2u2)(l + ZEI) (7.35)

8.  SUMMARY AND CONCLUSION

The theory presented in this paper enables us to determine the composite elastic
coefficients Cij' These coefficients were not known earlier for a laminated struc-
ture. After deformation, the state of initial stresses (different for hard and soft
materials) introduces anisotropy. The corresponding elastic coefficients Bij are
obtained in section 3. When Bij are known for two different materials, it is also
possible to find out the corresponding Cij's through equations (3.1labc). On the

other hand, when Ci ‘s are known for two different materials, then Biot's (1, p. 190]

J
analysis can be used to obtain the composite elastic coefficients.

In some cases, the use of the equivalent anisotropic continuum with elastic
coefficients in equations (4.1a)-(4.1e) are not sufficient. So the bending rigidity

of the 1laminations are taken into account by introducing stress couples through
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equations (4.11)-(4.12) as stated by Biot [3]. The corresponding equilibrium
equations are obtained in section 6.

Based upon the equilibrium equations for the composite elastic material and using
an analysis similar to Tolstoy [6], the velocities of the P and SV wave modes are
obtained explicitly.

The effects of couple stresses and initial stresses are found to be large for
values approaching the instability value. The effect on the propagation velocity can
then be quite large. As for the effects of gravity, these seem to be sensible for a
very weak (low rigidity) sediments and for a very low frequency at which buoyancy
effects are significant. This point deserves further attention and will be discussed

in a subsequent paper.

9. CONCLUDING REMARKS

Although the present theory is developed in the context of plane strain deforma-
tion, it can be extended to three-dimensional problems of transverse isotropic
materials with rectangular, triangular and circular plane form. Also, further
extension of results is possible for a thermoclastic laminated medium. Such problems

will be treated in a subsequent paper.
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