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ABSTRACT. 1In this paper, first, we study random best approximations to random sets,
using fixed point techniques, obtaining this way stochastic analogues of earlier
deterministic results by Browder-Petryshyn, KyFan and Reich. Then we prove two fixed
point theorems for random multifunctions with stochastic domain that satisfy certain
tangential conditions. Finally we consider a random differential inclusion with upper

semicontinuous orientor field and establish the existence of random solutions.
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1. INTRODUCTION.

Random fixed point theorems are stochastic generalizations of classical fixed
point theorems and are needed in the study of random equatioms. Their study was
initiated by the Prague school of probabilists, with the works of Hans [1] and Spacek
[2]. Recently the interest in these problems was revived by the survey article of
Bharucha-Reid [3]. Since then, there has been a lot of activity in this area and

several interesting results have appeared.

In this paper, we will study random fixed points in connection with random
approximations and will derive stochastic analogues of some results by Browder-
Petryshyn [4], KyFan [5] and Reich [6]. We also extend a random fixed point theorem
proved by Engl [7] and finally we prove the existence of a solution for a random
differential inclusion with an upper semicontinuous orientor field, extending this way

an earlier result of the author [8] (theorem 5.1).

For the corresponding deterministic theory, we refer to the recent books of
Goebel-Reich [9] for fixed points (in connection with the study of the geometry of the
underlying space) and of AubinmCellina [10] for differential inclusions. Another nice
work, bringing together the two main mathematical branches considered in this note,
namely fixed point theory and differential equations, is the paper of Reich [1l1],
where an interesting approach to fixed point theory is presented, through the
existence theory of abstract differential equations.
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2. PRELIMINARIES.

Let (R,L) be a measurable space and X a separable Banach space. Throughout this

work, we will be using the following notations:

Pf(c)(x) = {AcX: nonempty, closed (convex)}
and

Pkc(x) = {AgX: nonempty, compact, convex}

Let K:Q » Pf(X) be a multifunction. We say that K(.) is measurable, if for all
UcX open, we have that K (U) = {weR:K(w) N U£d}er. It can be shown - see Himmelberg
[10] - that the above definition of measurability of K(.) is equivalent to saying that
for any zeX, the map w * d(z,K(w)) = inf{lz-xl :xeK(w)} is measurable.
Furthermore, if there exists a complete o-finite measure on I, then the above two
properties are equivalent to saying that GrK = {(w,x) eQxX:xeK(w)}eIxB(X), where
B(X) is the Borel O0-field of X. Following Sch;1 [12] and Engl [7], we will say
that K:Q *> Pf(X) is separable, if it is measurable and there exists a countable set
DeX s.t. cl(DN K(w))=K(w). It is not difficult to show that if K(.) is measurable
with nonempty, closed values and K(w) = cl(intK(w)) for all weR, then K(.) is a
separable multifunction. This is the case for example, when K(.) has closed, convex,

solid values.

Let Y,Z be two Hausdorff topological spaces and let G:Y*ZZ‘{O} be a
multifunction. We say that G(.) 1is upper semicontinuous (u.s.c.), if for all UcZ
open, G+(U) = {yeY:G(y)cU} is open in Y. Also by h(.,.) we will denote the
Hausdorff metric on Pf(X). Recall that (Pf(X) ,h) 1is a complete metric space.

Let  K:Q + Pf(x) and let F:GrK Pf(X). We say that F(.,.) 1is a random
multifunction with stochastic domain K(.), if K(.) is measurable and for all xeX and
UcX open, we have {weQ:xeK(w), F(w,x) nU#d}e. Such an F(.,.) is said to be u.s.c.
(continuous, compact e.t.c.), if for all weQ, F(w,.) 1is u.s.c. (continuous,
compact e.t.c.) on K(w). Maps with stochastic domain were introduced by Engl [7].
A random fixed point of F(.,.) is a measurable map x:8 *+X s.t. for all
weR, x(w)eR(w) and x(w)eF(w,x(w)).

Finally, if wu(.) 1is a o-finite measure on I and G:Q *Pf(x) is measurable,

we will denote by S(l; the set of integrable selectors of G(.) 1i.e.

S(l; = {geLl(x) :g(w)eG(w) p-a.e.}. It 1is easy to check that this set is nonempty if

and only if ® > inf{ix):xeG(w) belongs in L}_ .

3. RANDOM APPROXIMATIONS AND RANDOM FIXED POINTS.

We will start with a random version of proposition 2.3 of Reich [6], which in

turn was an extension of an earlier very interesting result of KyFan [5] (theorem 2).

In this section (R,I,u) is a complete o-finite measure space. Also recall
that a map f:X *> X is nonexpansive, if | f(x)-£f(y)l < Ix-yl for all x,yeX. It is
well known (see for example Goebel-Reich [9]) that the metric projection on a closed,

convex set in a Hilbert space, is nonexpansive. That's why in theorems 3.1, 3.2, 3.3
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and 3.4, that follow and involve the metric projection (either in their statement or
in their proof), we assume that the ambient space is a Hilbert space.

THEOREM 3.1. 1f X is a separable Hilbert space, K:Q * Pfc(x) is a separable
multifunction and £:6rK + X is a random, nonexpansive map, with stochastic domain
K(.) s.t. for all we®, f(w,K(w)) 1is bounded. Then there exists x:Q *+ X measurable
s.t. for all weR, x(w)eK(w) and Hx(w)-f(w)l = d(f(w,x(w)),K(w)).

PROOF . From theorem 3.4 of [13], we know that there exists }:Qxx + X a
Caratheodory extension of f(.,.) (i.e. w * E(w,x) is measurable, x * f(w,x) 1is

continuous and =f). Let p(w):X + K(w) de the metric projection on K(w).

f‘Grl(
We have already mentioned that p(w)(.) 1is nonexpansive and it is also easy to show

(see [14]), that for every zeX, w > p(w)(z) is measurable. Let

C(w) = conv(pof) (w,K(w)). Note that C(w) = conv eU (pof)(w,y), where D is the
countable set postulated from the separability of K(.). Hence ® * C(w) is a
measurable multifunction. For every weR, (pof)(w,.):C(w) + C(w) and is
nonexpansive. So from Browler ([15], we know that it has a fixed point. Consider the
multifunction L:Q + Pf(X) defined by:

L(w)

]

{xec(w):(pof) (w,x)=x}

{xeC(w) : (pof) (w,x)=x}

6rL = {(w,x)efxX:(pof)(w,x) = x} N GrC

But (w,x) * (pof) (w,x) 1is measurable in ® and continuous in x. Hence it is
jointly measurable. Also since C(.) is measurable, GrCeIxB(X). Thus GrLeIxB(X).
Applying theorem 3 of Saint-Beuve [16], we get x:2 > X measurable s.t. x(w)eL(w)
for all weQ., Therefore we have: x(w)eK(w) and jIx(w)-f(w,x(w))y = d(f(w,x(w)),K(w))

REMARK 1. If K(.) is bounded values, the assumption of the range of f(w,.) can
be dropped.

REMARK 2. Another result in the direction of theorem 3.1 above with a different
set of hypotheses, can be found in [17] (theorem 4).

We have a similar result for condensing maps. Recall that f:X » X 1is said to be
Y-condensing, if it 1is continuous and for all BcX nonempty, bounded s.t.
Y(B)>0, Y(£(B))<Y(B), where Y(.) is the Kuratowski measure of noncompactness.

THEOREM 3.2. If X is separable Hilbert space, K:Q * Pfc(x) is separable and
f:GrK * X is a random condensing map with stochastic domain K(.) s.t. for all
weR, f(w,K(w)) is bounded. Then there exists x:2 * X measurable s.t. for all
well x(w)eR(w) and Ix(w)-f(w,x(w)) | = d(f(w.x(w)),K(w)).

PROOF. Is the same as in theorem 3.1, using this time the fixed point of Furi-
Vignoli [18].

Using theorem 3.1, we can have the following random version of a fixed point due
to Browder-Petryshyn [4].

THEOREM 3.3. 1If X is a separable Hilbert space, K:Q *+ Pfc(x) is separable with
bounded values and f:GrK * X 1is a random, nonexpansive map with stochastic domain

K(.) s.t. for every xt€bdK(w) for which p(w,f(w,x)) = x, we have f(w,x) = x.
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Then f(. .) admits a random fixed point.

PROOF. From theorem 3.1 (see remark 1), we know that there exists x:Q + X
measurable s.t. Ix(w)-£(w,x(w)) = d(f(w,x(w)), K(w))) = If(w.x(w))-p(w,f(w,x))I.
Since the best approximation 1is unique, x(w) = p(w,f(w,x(w))). If x(w)ebdk(w),
then by hypothesis x(w) = f(w,x(w)). Otherwise we must have that

f(w,x(w) )eK(w) f(w,x(w)) = p(w, f(w,x(w))) = x(w), weq.
REMARK. In the previous theorem, we can instead assume that for all wef f(w,.)

is condensing on K(w). Then in the proof we have to use theorem 3.2.

Now we pass to multifunctions and prove the following random fixed point theorem.
THEOREM 3.4. 1If X is a separable Hilbert space, K:Q * Pfc(X) is separable and
F:GrK + Pfc(x) is an h-continuous, Y-condensing, random multifunction with
stochastic domain K(.) s.t. for all we2 and for xebdK(w), F(w,x) N p_l(m,x)
c{x} and F(w,K(w)) is bounded. Then F(.,.) admits a random fixed point.
PROOF. Let G:OQxX + Pfc(x) be the multifunction defined by
G(w,x) = F(w,p(w,x)). From our hypotheses on F(.,.), we see that w > G(w,x) 1is
measurable, while x * G(w,x) is h~continuous. Also we claim that G(w,.) is

Y-condensing. So let BcX be nonempty, bounded, with Y(B)>0. We have
Y(G(w,B)) = Y(F(w,p(w,B))) < Y(p(w,B)) < Y(B)

the last inequality being a consequence of the fact that p(w,.) 1is nonexpansive.
Let C(w) =_<:n:F(w,1((w)). Then clearly G(w,.):C(w) * C(w). Note that 1if
{x“}nZI is the countable set postulated from the sepaﬂlity of K(.) and exploiting
the h-continuity of F(w.,), we have that C(w) = convngl F(w,xn) w *> C(w) is
measurable. Then consider the multifunction defined by L(w) = {xeC(w) : xeG(w,x)}.
From theorem 1 of Himmelberg-Porter-Van Vleck [19], we know that for all
weR, L(w)#0. Also note that GrL = {(w,x)efxX:d(x,6(w,x)) = 0}N GrCeIxB(X). Again
theorem 3 of Saint-Beuve [16], produces a measurable map x:2 + X s.t. x(w)eL(w),

for all weQ, Let  x(w)=p(w,x(w)). Clearly %(.) is measurable and x(w)ebdK(w).
Then x(0) = p ' (u,k(®)) and x(W)eG(u,x(w)) = F(w,%(w)) »x(ep  (w,x(w) n

F(w,x(w)) » x(w) = x(w) » x(w)eK(w) and x(w)eF(w,x(w)) 1i.e. x(.) is the desired
random fixed point.

REMARK. If there 1is no w dependence of the data in the previous theorem
(deterministic case), then we can relax the hypotheses on F(.) and simply assume that
F(.) is closed, Y-condensing and with bounded range. Also in the deterministic case,
the theorem can be proved for general Banach spaces, if we assume that K 1is
approximatively w-compact and F(.) is w-u.s.c., with w-compact range. The proof is
analogous to the random case and in the general Banach space, we have to use
proposition 2.1 of Reich [6], which tells us that the metric projection on K is a w-
UeSeCe multifunction and eventually apply the Kakutani-KyFan fixed point
theorem. Both those deterministic versions of theorem 3.4, extend theorem 3.3 of
Reich [6]. Note that the second deterministic result that was stated in general
Banach spaces, can not be extended to the random case, since as it was illustrated
with a counter example in [20], a multifunction G(w,x) which is measurable in w, w-

u.s.c. in x, is not in general jointly measurable.
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The next result extends theorem 8 of Engl [7]. Recall that a multifunction

F:K * 2x\ {¢}is compact, if F(K) 1is compact. Also if KcX is convex xe€K, we define
I1(x,K)={zeX:z=x+A(y-x) for some yeX and AD0}. So I(x,K) is nothing else, but the
translation to the point x of the well known from nonsmooth analysis, '"Bouligand
tangent cone" to K at x (see AubinEkeland {21]). Since we do not need any more the
nonexpansiveness of the metric projection, the result can be stated for general
separable Banach spaces.

THEOREM 3.5. If X is separable Banach space, K:Q *+ Pfc(x) is separable and
F:GrK * Pfc(x) is a compact, u.s.c., random multifunction with stochastic domain
K(.) s.t. F(w,x) c I(x,K(w)) wed, Then F(.,.) a random fixed point.

PROOF. From proposition 5 of Engl [7], we know that there exists a multifunction
H:GrK » Pfc(X) Sete

(1) for each (w,x)€GrK, H(w,x)cF(w,x)
(i) for every weQ, H(w.,) is u.s.c. on K(w)
(iii) H(.,.) is jointly measurable

Then let L:Q + 2X be defined by
L(w) = {xeX(w):xeH(w,x)}

From theorem 3.1 of Reich [6], we know that for all weR, L(w)#0. Observe that:
GrL = {(w,x)eRxX:xeX(w), xeH(w,x)}

= proj ((@xD) N GrH)
QxX

where D={(x,y)eXxX:x=y}. But note that GrHeIxB(X)xB(X). So

(2xD) N GrHeZxB(D). Then using the theorem in section 39.1IV of Kuratowski [22], we
get that projnxx(ﬂxD)ﬂGrFesz(X). Hence GrLeIxB(X). Once again, through theorem
3 Saint-Beuve [16], we get x:2 + X measurable s.t.

x(w)eL(w), we@ > x(w)eH(w,x(w))cF(w,x(w)).

4. RANDOM DIFFERENTIAL INCLUSIONS.

Let (R,I,u) be a complete probability space, T=[0,b] a nonempty, closed, bounded
interval in R+, X a finite dimensional Banach space and xo:Q + X measurable. We

consider the following random differential inclusion:
x(w,t)eF(w,t,x(w,t)) a.e., for all weQ
x(w,0) = xo(w) (*)

By random solution of (*), we understand a stochastic process x:QxT * X, with

absolutely continuous realizations, satisfying (*) a.e. in t, for all weQ.

In this section we present a theorem on the existence of random solutions of (*),
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that generalizes theorem 5.1 of [8].
THEOREM 4.1. If F:QxTxX * Pf

(1) (w,t,x) * F(w,t,x) is measurable

(2) for all (w,t)eQxT, x > F(w,t,x) is u.s.c.

(3) lF(w,c,x)'< a(w,t)+b(w,t) H#xla.e., for all weR, with a(.,.),b(.,.) measurable

C(X) is a multifunction s.t.

and a(w,.),b(w .)eLi Then (*) admits a random solution.
PROOF. We will by determining an a priori bound for the random solutions of
(*) So let x(.,.) be a random solution. Fixing weQ, we have:

t

x(w,t) = xo(w)+ ({ f(s)ds, teT, fES;(w < x(w,.))

t
Ix(w, )8 < lIx (@ + [ W€ ds
° 0
t

t
(o £ < Mx (@)1 + [ a(w.s)ds+ [ blw,s) Ix(w.s)l ds
0 0

Applying Gronwall's inequality, we get that:

Ix(w,el < () xo(w)ﬂ +1a(w,.) Hl) exp Ib(w,.) Hl = M(w)

F(w,t,x) if 1xi <€ M(w)

Set F(w,t,x) =

M(w)x
F(w,t, *EQF_) if  x) > M(w)

It is easy to check that i(.,.,.) has the same measurability and semicontinuity
properties as F(.,.,.) and furthermore we have that lF(w‘t,x)'<a(w,t)+b(w,t)M(m)
=p(w,t), with ¢(.,.) measurable and ¢(w,.)eLi. We will consider (*) with the

random orientor field ﬁ(.,.,.).
Let W(w)cC(T,X) be defined by:
t
W(w) = {xeC(T,X):x(t) = xo(w) + é g(s)ds, teT, lg(t)h <¢(w,t) a.e.}
Define T:@xC(T,X)xL (X) » C(T,X) by:
t

T(w,x,g) (t) = xo(m)+ [ g(s)ds-x(t)
0

Clearly T(.,.,.) is measurable in ® and continuous in (x,g). So 1is jointly
measurable. Also if %(w)=B(0, “¢(w,.)“l) is the closed ball in Ll(X), centered at
the origin with radius n¢(w,.)|1, then ﬁ(.) is measurable and

GrW = {(0,x)€qC(T,X): 1T(w,x,g)l _ = 0, d(g,B(w))=0}

GRWEIxB(C(T,X)), , (since g=x, see Kuratowski [22], 39.1V).
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Furthermore, a simple application of the Arzela-Ascoli theorem, tells us that for

every wef, W(w) is a compact subset of C(T,X).
1
Next let R:gew + 20¢TXXL () ygy 10 ihe multifunction defined by:

t

R@w,x) = {(y,DeC(T,X0xL (X) y(£)=x (0)+ | £(s)ds, teT, fes) }
Define  G:@xC(T,X)xL (X) *R, by: 0 Flw,.,x())
G(w,x,f) = d(f,sf )
F(w:"x('))
Note that:
1 1
d(f,s ) = inf{lf-hll i hes, }
F(w,.,x(.)) F(w,.,x(.))
b
= inf{ [ IECt)-h(O)N de:hes’ }
0 F(w,.,x(.))
b -~
= [ inf{ WE(t)-z} :zeF(w,t,x(t))}dt
0
b -~
= f d(f(t) ,F(w,t,x(t))dt
0
But by hypothesis 1), (w,t,y) * d(z,f-‘(w,t,y)) a measurable and

z > d(z,ﬁ(m,t,y)) is continuous. Hence (w,t,y,z) * d(z,f‘(m,t,y)) is measurable.
Also the evaluation map (t,x(.)) * et(x(.))=x(t), is continuous from TxC(T,X) into
X. Hence we deduce that (w,t,x(.)) + d(£f(t),F(w,t,x(t))) is measurable from
QxTxC(T,X) into IR+ . Rewrite R(.,.) as follows:

R(w,x) = {(y,0)ec(T,0)xL(x): 1T(w,y,)0, =0, G(wx,£) = 0}

Let P_c_:C(T,X)xLl(X) be defined by P={(y,f):y=f}. Then the projection to the
first variable is one-to-one, continuous. Thus by Kuratowski [22] (39.IV):

projQxc(T,X)xC(T,xfrkspmjssz(T,X)xC(T,X)((er np)n
{(U)yX)y’f) :y(0)=xo(w), &(w,x,f) = 0} SXXB(C(T,X) )XB(C(T,X)).

So 1f R(wx) = projy X)ﬁ(w,x), then GrReIxB(C(T,X))xB(C(T,X)).  Note that

’
for fixed w, R(w,.):W(w) » W(w). We claim that it is u.s.c. To show this, since
W(w)cC(T,X) is compact, it suffices to show that GrR(w,.) is closed 1in

C(T,X)xC(T,X). So let (x_ ,y )eGrR(w,.), n>l s.t. (x ,y ) * (x,y). By definition:
n n’n y

n
t 1
yn(t)ao(mhg £ (s)ds, teT, £ eS,

F(w,. % (+))

From the Dunford-Pettis compactness criterion, we deduce that {fn} Vs
n»>1

sequentially w-compact in LI(X). So by passing to a subsequence if necessary, we
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may assume that fn ¥ fin LI(X). Using theorem 3.1 of [23], we have that:

f(t)econv 'l—in:{fn(t)} ¢ conv I‘; ﬁ(m,t,xn(w)) a.e. ¢ %(m,t,x(t)) a.e.
n?l=

The last inclusion being a consequence of the upper semicontinuity and the

convexity of the values of F(.be,d)e So fes} . Also

F(w,.,x(.))

t
y(t) = x (w)+ [ £(s)ds, teT
° 0

(%,y)eEGrR(w..)

R(w .) is u.s.c. from W(w) into W(w).

C(T,X)

Let L:2 + 2 be defined by:

L(w) = {xeC(T,X) :xeR(w,x), xeW(w)}

Since for fixed weQ, R(w,.):W(w) > W(w) is u.s.c., from the Kakutani-KyFan
fixed point theorem, we have that L(w)#®, for every weq. Then as in the proof of

theorem 3.5, we have:
GrL = pronxC(T x)((ﬂxD) NGrR)eLxB(C(T,X))

where D = {(x,y)eC(T,X)xC(T,X) :x=y}. Apply theorem 3 of Saint-Beuve [16], to get
r:2 * Cc(T,X) measurable, s.t. for all weR, r(w)eL(w). Set x(w,t)=r(w) (t).
Clearly this is a random solution of (*) with orientor field F. But from the
definition of F, we see that lF(m,t,x)|< a(w,t)+b(w,t) jxya.e., for all weR and as
in the beginning of the proof, through Gronwall's inequality, we get that

Ix(w, el M) » F,t,x(w,t)) = F(w,t,x(w,t)) > x(.,.) is the desired random

solution of (*).
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