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ABSTRACT. At first we are given conditions for existence of relative integral bases
for extension (K;k) = n. Then we will construct relative integral bases for

extensions 0, (5V=3)/0, (V¥=3), 0, (6V=3)/0, (3V=3), o, (6/=3)/ z.
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1. EXISTENCE OF A RELATIVE INTEGRAL BASES.

The following criterion has been shown in [1] for existence of a Relative
Integral Bases, for any finite extension K/k.

THEOREM 1.1. Let (K;k) = n, and let hk be an odd integer, then OK has a
"relative integral bases" over OkQ*'dK/k is a principal ideal. See also [2].

COROLLARY 1.2. If 0K = P.I.D., then hk =1 and d = P.I. Therefore for

K/k
every finite extension of k where O, = P.I.D., a relative integral bases exists.
= = Q(/=3 = Q(3/= = Q(8/= = = =
Let k| = Q, k, = Q(/=3), k; = Q(*/=3), K, = Q(*/-3). Since by = h =h =1,
so 0K s 0K s 0K are P.I1.D. and then by corollary 1.2, relative integral bases for
1 2
extensions K6/k1’ K6/k2, K6/k3 exists.
Now, we will compute the relative discriminant for the extensions. Let (K;k)=n
and for some 6 € K, 0, = 0, (6) and 6 satisfies an equation F(8) = 0 of degree n.
PN 1) 4@ )
Then Dy, = (F(8) = (0 - 6°%’), where 0, 8/, 6 seees 81
Since extensions KZ/KI’ 1(3/1(1 have discriminant divisible by 3 [3], by theorem
in [3] discriminants K6/k2, K6/k3, K6/k1 are also divisible by 3 and 3 is completely
ramified in kl,kz,k3.

For extension K6/k2, 8 = 6/23 we therefore have:

are conjugates [3].

b, . = (8- 8Dy (e- 6Dy = (8/73 - 6/TF) (5/F - p2- 6/TF),
Kg/k,

DKG/kz = (-3)4/3 for p = :l—%—fzi . By the definition in [4],
d =N ®, )=k

Ke/k, Kg/k, “Kg/k,
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For extension K /k,, 0 = /73, D fi, ” (0-61) = (=318, then a, T »t2.
4/3 1/2 11/6
By theorem in [4], D =D D = (=3) * (=3) = (-3) , then
) Rieh i W Nl WS
Ke/k) )

Now we will construct relative integral bases for the extensions. See also [5]
for associated work.
For Ky/k;, O = (1,%/=3, 3/(=3)3-2, [3].
3
1+ /=3
For K,/k;, oKZ =1, —5—=) 2, [3].

2. RELATIVE INTEGRAL BASES FOR 06(6/33)/02(/33).

Let 06 = (l,a,B)O2 for a,B in 06’ By tgeorem in [6], disc (1,a,B) = dKe/kz’
|1 a B |
2 4
disc(l,a,8) = [1 pa p28 | =4d = (=3)".
KG/k2
|1 o2%2a o8 |

Now a2B2(3p2 - 3p)?2 (—3)4 and from here o *+ B = V=3,
We may take o = 6/-3 and B = 8/(=3)2, because they satisfy an a.B = Y=3 and
they are in O

6°
Since N6/3(a) = 3/23 and N6/3(B) = 3V(—3)2 are in 03, we have:
0, = (1, &/=3, /(=37 o,.

3. RELATIVE INTEGRAL BASES FOR 06(6/23)/03(3/23).
Let 06 = (l,u)O3 for @ € 0 Again by theorem [6]

6°
2
1 «of g
disc(l,a) = = 402 = ¢ = 3/33,
1 -a Kg/ky
6/3 6/3 -6/23 -3/3
Note @ = 5 A 06’ because N6/3(a) =— 3 = ’ € 03. Hence, (1l,a) is
not a relative integral bases.
333
We define o = E—t?r——g for B € 03 such that N6/3(a) is divisible by 2.2 = 4
and a € 06' If we take B = 3’(—3)5 € 03, it satisfies the conditions, this is

because

B+ 63 8 -523 33 EHZ 33 ¢ 0. by theoren [6]
2 2 4 ’ 3

Also, disc(l,a) = dke/ka’ so that:

N R = A
06 =11, s E— ) 03.

4. RELATIVE INTEGRAL BASES FOR 06(6/35)/2.

Since K6 = Q(G/:g), at first we start by:

0 = (1,6,62,083,0%,05) z

Let 6 = /-3 ¢ 0.. Since disc(1,6,62,83,0%,85) = 22.22.22.4

6 kl, we can apply

KS/
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theorem [3] in order to cancel out 22« 22 .22 and generate a new bases.
We will build a new bases a: = {ai: 0s1s5}. By the theorem [3] we check which
a; is going to be changed. uo* = u0/2 =1/2 ¢ 06' Thus there is no change for the

first bases element a4y = 1.

g,a, + a g.a, + 6
* i70 1 i’0 *
al 3 3 for OSgi S 1. For any value of gi. ul is not in 06.

This is because

146/53 | 1-6/=3 _ 1-3/=3

* =
116/3(cu1 ) 2 2 % ¢ 03 and also since N6/3(0/2) ¢ 05, so there
is no change for a.

g,a. + g a +a
az* = % for Oﬁgié 1. For any value of gi,az* ¢ 06’ then there will

be no change for e

g,a, +g,a +g.a +a
a.3*= 10 2; 32 3 for 053151. In this case for gl = g2 = g3 =1,

* = /(3% ¢ 06' This is because:
o LTS 1STDT | 15
2 2 4

%3

a3 le 03, and for other values
*

of 84003 ¢ 06' .

«_ 8% * 8% T 83% T g0yt oy

4 2 .

x _ 533 + /)"

aa i — € 06.

a

In this case for g2 = g4 =1,

This is because

*) =

573 + S/ . S/ - ST | 43 .
N6/3(“4 2 . 7 = 3 € 03, and for other 8;:%, ¢06.
8% * By% * 83%, + g% + ga* +ag
%5 = 2 » for gy = g5 = L,

x o YEHZ + ()5
5 2

[+

*
€ 06' This is because N6/3(cz5 ) € 03, and for other values
of gi,as* ¢ 06' This last assertion is since

22 - 22 .22

x ok . *
disc(ao,al,az,a3 28,750 ) Pge dK6/k1’ and each ay, a,” are in 06’ then

i

by theorem [6].

0. = [1 6/73, 6,2, LS 83 4 SR SEHZ + YRS ) .
6 ’ ’ kd 2 ’ ’ 2

3 Z.
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