

COMPUTATION OF RELATIVE INTEGRAL BASES FOR ALGEBRAIC NUMBER FIELDS

MAHMOOD HAGHIGHI

Department of Computer Science
Bradley University
Peoria, IL 61625

(Received March 2, 1987 and in revised form September 21, 1987)

ABSTRACT. At first we are given conditions for existence of relative integral bases for extension $(K;k) = n$. Then we will construct relative integral bases for extensions $O_{K_6}^{(6\sqrt{-3})}/O_{k_2}^{(\sqrt{-3})}$, $O_{K_6}^{(6\sqrt{-3})}/O_{k_3}^{(3\sqrt{-3})}$, $O_{K_6}^{(6\sqrt{-3})}/Z$.

KEY WORDS AND PHRASES. Integral Bases and Principal Ideal.

1980 AMS SUBJECT CLASSIFICATION CODE. 115.

1. EXISTENCE OF A RELATIVE INTEGRAL BASES.

The following criterion has been shown in [1] for existence of a Relative Integral Bases, for any finite extension K/k .

THEOREM 1.1. Let $(K;k) = n$, and let h_k be an odd integer, then O_K has a "relative integral bases" over $O_k \leftrightarrow d_{K/k}$ is a principal ideal. See also [2].

COROLLARY 1.2. If $O_K = P.I.D.$, then $h_k = 1$ and $d_{K/k} = P.I.$ Therefore for every finite extension of k where $O_k = P.I.D.$, a relative integral bases exists.

Let $k_1 = Q$, $k_2 = Q(\sqrt{-3})$, $k_3 = Q(3\sqrt{-3})$, $K_6 = Q(6\sqrt{-3})$. Since $h_{k_1} = h_{k_2} = h_{k_3} = 1$, so O_{K_1} , O_{K_2} , O_{K_3} are P.I.D. and then by corollary 1.2, relative integral bases for extensions K_6/k_1 , K_6/k_2 , K_6/k_3 exists.

Now, we will compute the relative discriminant for the extensions. Let $(K;k) = n$ and for some $\theta \in K$, $O_K = O_k(\theta)$ and θ satisfies an equation $F(\theta) = 0$ of degree n . Then $D_{K/k} = (F(\theta) = \prod(\theta - \theta(t))$, where $\theta, \theta^{(1)}, \theta^{(2)}, \dots, \theta^{(n)}$ are conjugates [3].

Since extensions K_2/k_1 , K_3/k_1 have discriminant divisible by 3 [3], by theorem in [3] discriminants K_6/k_2 , K_6/k_3 , K_6/k_1 are also divisible by 3 and 3 is completely ramified in k_1, k_2, k_3 .

For extension K_6/k_2 , $\theta = 6\sqrt{-3}$ we therefore have:

$$D_{K_6/k_2} = (\theta - \theta^{(1)})(\theta - \theta^{(2)}) = (6\sqrt{-3} - \rho^{6\sqrt{-3}})(6\sqrt{-3} - \rho^2 \cdot 6\sqrt{-3}),$$

$$D_{K_6/k_2} = (-3)^{4/3} \text{ for } \rho = \frac{-1 + \sqrt{-3}}{2}. \text{ By the definition in [4],}$$

$$d_{K_6/k_2} = N_{K_6/k_2}(D_{K_6/k_2}) = (-3)^4.$$

For extension K_6/k_3 , $\theta = \sqrt[6]{-3}$, $D_{K_6/k_3} = (\theta - \theta^{(1)}) = (-3)^{1/6}$, then $d_{K_6/k_3} = (-3)^{1/2}$.

By theorem in [4], $D_{K_6/k_1} = D_{K_6/k_2} \cdot D_{k_2/k_1} = (-3)^{4/3} \cdot (-3)^{1/2} = (-3)^{11/6}$, then $d_{K_6/k_1} = (-3)^{11}$.

Now we will construct relative integral bases for the extensions. See also [5] for associated work.

For K_3/k_1 , $0_{K_3} = (1, \sqrt[3]{-3}, \sqrt[3]{(-3)^2} \cdot z)$, [3].

For K_2/k_1 , $0_{K_2} = (1, \frac{1 + \sqrt{-3}}{2}) \cdot z$, [3].

2. RELATIVE INTEGRAL BASES FOR $0_6^{(\sqrt[6]{-3})}/0_2^{(\sqrt{-3})}$.

Let $0_6 = (1, \alpha, \beta)0_2$ for α, β in 0_6 . By theorem in [6], $\text{disc}(1, \alpha, \beta) = d_{K_6/k_2}$,

$$\text{disc}(1, \alpha, \beta) = \begin{vmatrix} 1 & \alpha & \beta \\ 1 & \rho\alpha & \rho^2\beta \\ 1 & \rho^2\alpha & \rho\beta \end{vmatrix} = d_{K_6/k_2} = (-3)^4.$$

Now $\alpha^2\beta^2(3\rho^2 - 3\rho)^2 = (-3)^4$ and from here $\alpha \cdot \beta = \sqrt{-3}$.

We may take $\alpha = \sqrt[6]{-3}$ and $\beta = \sqrt[6]{(-3)^2}$, because they satisfy an $\alpha \cdot \beta = \sqrt{-3}$ and they are in 0_6 .

Since $N_{6/3}(\alpha) = \sqrt[3]{-3}$ and $N_{6/3}(\beta) = \sqrt[3]{(-3)^2}$ are in 0_3 , we have:

$$0_6 = (1, \sqrt[6]{-3}, \sqrt[6]{(-3)^2}) 0_2.$$

3. RELATIVE INTEGRAL BASES FOR $0_6^{(\sqrt[6]{-3})}/0_3^{(\sqrt[3]{-3})}$.

Let $0_6 = (1, \alpha)0_3$ for $\alpha \in 0_6$. Again by theorem [6]

$$\text{disc}(1, \alpha) = \begin{vmatrix} 1 & \alpha \\ 1 & -\alpha \end{vmatrix}^2 = 4\alpha^2 = d_{K_6/k_3} = \sqrt[3]{-3},$$

Note $\alpha = \frac{\sqrt[6]{-3}}{2} \notin 0_6$, because $N_{6/3}(\alpha) = \frac{\sqrt[6]{-3}}{2} - \frac{\sqrt[6]{-3}}{2} = \frac{-3\sqrt[6]{-3}}{4} \in 0_3$. Hence, $(1, \alpha)$ is

not a relative integral bases.

We define $\alpha = \frac{\beta + \sqrt[3]{-3}}{2}$ for $\beta \in 0_3$ such that $N_{6/3}(\alpha)$ is divisible by $2 \cdot 2 = 4$ and $\alpha \in 0_6$. If we take $\beta = \sqrt[3]{(-3)^2} \in 0_3$, it satisfies the conditions, this is because

$$\frac{\beta + \sqrt[3]{-3}}{2} \cdot \frac{\beta - \sqrt[3]{-3}}{2} = \frac{\sqrt[3]{(-3)^4} - \sqrt[3]{(-3)^2}}{4} = \sqrt[3]{-3} \in 0_3, \text{ by theorem [6]},$$

Also, $\text{disc}(1, \alpha) = d_{K_6/k_3}$, so that:

$$0_6 = \left(1, \frac{\sqrt[3]{(-3)^2} + \sqrt[3]{-3}}{2} \right) \cdot 0_3.$$

4. RELATIVE INTEGRAL BASES FOR $0_6^{(\sqrt[6]{-3})}/z$.

Since $K_6 = Q(\sqrt[6]{-3})$, at first we start by:

$$0_6 = (1, \theta, \theta^2, \theta^3, \theta^4, \theta^5) z$$

Let $\theta = \sqrt[6]{-3} \in 0_6$. Since $\text{disc}(1, \theta, \theta^2, \theta^3, \theta^4, \theta^5) = 2^2 \cdot 2^2 \cdot 2^2 \cdot d_{K_6/k_1}$, we can apply

theorem [3] in order to cancel out $2^2 \cdot 2^2 \cdot 2^2$ and generate a new bases.

We will build a new bases $\alpha_1^* = \{\alpha_1: 0 \leq 1 \leq 5\}$. By the theorem [3] we check which α_1 is going to be changed. $\alpha_0^* = \alpha_0/2 = 1/2 \notin 0_6$. Thus there is no change for the first bases element $\alpha_0 = 1$.

$$\alpha_1^* = \frac{g_1 \alpha_0 + \alpha_1}{2} = \frac{g_1 \alpha_0 + \theta}{2} \text{ for } 0 \leq g_1 \leq 1. \text{ For any value of } g_1, \alpha_1^* \text{ is not in } 0_6.$$

This is because

$$N_{6/3}(\alpha_1^*) = \frac{1+6\sqrt{-3}}{2} \cdot \frac{1-6\sqrt{-3}}{2} = \frac{1-3\sqrt{-3}}{4} \notin 0_3 \text{ and also since } N_{6/3}(\theta/2) \notin 0_3, \text{ so there is no change for } \alpha_1.$$

$$\alpha_2^* = \frac{g_1 \alpha_0 + g_2 \alpha_1 + \alpha_2}{2} \text{ for } 0 \leq g_1 \leq 1. \text{ For any value of } g_1, \alpha_2^* \notin 0_6, \text{ then there will be no change for } \alpha_2.$$

$$\alpha_3^* = \frac{g_1 \alpha_0 + g_2 \alpha_1 + g_3 \alpha_2 + \alpha_3}{2} \text{ for } 0 \leq g_1 \leq 1. \text{ In this case for } g_1 = g_2 = g_3 = 1,$$

$$\alpha_3^* = \sqrt[6]{(-3)^4} \in 0_6. \text{ This is because:}$$

$$\alpha_3^* = \frac{1+6\sqrt{(-3)^3}}{2} \cdot \frac{1-6\sqrt{(-3)^3}}{2} = \frac{1-6\sqrt{(-3)^6}}{4} = 1 \in 0_3, \text{ and for other values of } g_1, \alpha_3^* \notin 0_6.$$

$$\alpha_4^* = \frac{g_1 \alpha_0 + g_2 \alpha_1 + g_3 \alpha_2 + g_4 \alpha_3^* + \alpha_4}{2} \text{. In this case for } g_2 = g_4 = 1,$$

$$\alpha_4^* = \frac{\sqrt[6]{-3} + \sqrt[6]{(-3)^4}}{2} \in 0_6. \text{ This is because}$$

$$N_{6/3}(\alpha_4^*) = \frac{\sqrt[6]{-3} + \sqrt[6]{(-3)^4}}{2} \cdot \frac{\sqrt[6]{-3} - \sqrt[6]{(-3)^4}}{2} = \frac{4 \cdot 3\sqrt{-3}}{4} \in 0_3, \text{ and for other } g_1, \alpha_4^* \notin 0_6.$$

$$\alpha_5^* = \frac{g_1 \alpha_0 + g_2 \alpha_1 + g_3 \alpha_2 + g_4 \alpha_3^* + g_5 \alpha_4^* + \alpha_5}{2}, \text{ for } g_2 = g_5 = 1,$$

$$\alpha_5^* = \frac{\sqrt[6]{(-3)^2} + \sqrt[6]{(-3)^5}}{2} \in 0_6. \text{ This is because } N_{6/3}(\alpha_5^*) \in 0_3, \text{ and for other values}$$

$$\text{of } g_1, \alpha_5^* \notin 0_6. \text{ This last assertion is since}$$

$$\text{disc}(\alpha_0, \alpha_1, \alpha_2, \alpha_3^*, \alpha_4^*, \alpha_5^*) = \frac{2^2 \cdot 2^2 \cdot 2^2}{2^2 \cdot 2^2 \cdot 2^2} \cdot d_{K6/k1}, \text{ and each } \alpha_i, \alpha_i^* \text{ are in } 0_6, \text{ then}$$

by theorem [6].

$$0_6 = \left\{ 1, \sqrt[6]{-3}, \sqrt[6]{(-3)^2}, \frac{1+6\sqrt{(-3)^3}}{2}, \frac{\sqrt[6]{-3} + \sqrt[6]{(-3)^4}}{2}, \frac{\sqrt[6]{(-3)^2} + \sqrt[6]{(-3)^5}}{2} \right\} \cdot z.$$

REFERENCES

1. NARIEWICZ, W. Elementary and Analytic Theory of Algebraic Numbers, Pwin, Warsaw, 1976.
2. ARTIN, E. Questions de Base Minimal dans la Theorie des Nombres Algebriques, National de la Recherche Scientifiques XXIV, (1950), 19-20.
3. COHN, H. A Classical Invitation to Algebraic Numbers and Class Field Theory, Springer-Verlag, New York, 1978.
4. COHN, H. Introduction to the Construction of Class Fields, Cambridge University Press, New York, 1985.
5. HAGHIGHI, M. Relative Integral Bases for Algebraic Number Fields, Internat. J. Math. and Math. Sci. 9 (1986), 97-104.
6. RIBENBOIM, P. Algebraic Number Theory, John Wiley and Sons, New York, 1972.

Special Issue on Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk