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ABSTRACT. Let cl[c,D], -1<D<C<1 denote the class of functions g,g(0)=0
) Ll
g'(0)=1, analytic in the unit disk E such that (z (z)) is subordinate

g'(z)
+ . ;
to i+§;, zEE. We investigate some classes of Alpha-Quasi-Convex Func-
tions £, with £(0)=f'(0)-1=0 for which there exists a gec[c,D] such that
£'(z) (zf'(=z)) "' . : 1+az
-Q -1<B<Aa<K -
(1 )g'(z) + a 5 (2) is subordinate to 1vBz’ 1<B<A<l. 1Integral rep

resentation, coefficient bounds are obtained. It is shown that some of

these classes are preserved under certain integral operators.
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1. INTRODUCTION

get S,K,S* and C denote the classes of analytic functions f:
f(z)=2z+4 a zn which are respectively univalent, close-to-convex, starlike
(witﬁ=%espect to the origin) and convex in the unit disc E. 1In [1], a
new subclass C* of univalent functions was introduced and studied. A
function f belongs to C* if there exists a convex function g such that,

for ze¢E,
(zf'(z))"

Re ' (2)

>0.

The functions in C* are called quasi-convex functions and CC;C*C_KCLS.
It is also sknown that fec*, if, and only if, zf'eK. For complete study
of C*, see Noor [2].

A new class Qa of o-quasi-convex functions has been defined and dis-
cussed in some details in [3]. A function f belongs to the class Qa,a
real, if and only if there exists a convex function g such that, for zt€E

f'(z) (zf'(z))"'

Tz T J> o (1.1)

Re [ (1-a)

*
We note that QO = K and Ql =C .
In [4] , Janowski introduced the calss P[A,B]. For A and B, 1<B<A<l,
a function p, analytic in E with p(0)=1 belongs to the class P[A,B],if p(z)

1+AZ . *
1+pz - Also, given C and D, -1<D<C<1, cf(c,p] and s [c,D]

is subordinate to
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o
denote the classes of functions f analytic in E with f(z)=z + L anzn
n=2
L 1 )
such that iE%T%g%l_ eP[(c,p] and E%Té%l ePlc,p] respectively. For C=1

* * X
and D=-1 we note that c[1,-1]= ¢ and s [1,-1] = s . silvia [5] defines
the classes K[A,B;C,D] as follows:

oo
Definition 1.1. A function f:£(z) = z + I anzn, analytic in E, is said
to be in the class k[A,B; C,D], —liBiAil;nfiiDici% if there exists a
fl
gec[c,Dp] such that 5—'—22_;5 P[a,B].

It is clear that K[1,-1;1,-1] = K and
K[A,B;C,D]C KCSs.
We now define the following:

o

Definition 1.2. Let a>0 be real and f: f(z) = z + z anzn be analytic
n=2

in E. Then fEQa[A,B; C,D], -1<B<A<l; -1<D<C<1l if and only if there

exists a function gec[c,D] such that, for zeE,

£'(z) (zf'(z))"
g'(z) e g'(z)

(1-0) € P[a,B].

It is clear that Qa[l,-l; 1,-1]= Qa'
2. MAIN RESULTS

We shall now study some of the basic properties of the class
Qa[A,B;C,D]. From the definition 1.2, we immediately have:
THEOREM 2.1. Let F(z) = (l-a)f(z)+azf'(z) ,where O<a<] is real and zE€E.
Then fEQa[A,B;C,D], -1<B<A<1l; =-1<D<C<1l if and only if FeK [a,B;C,D].

We now give the integral representation for the functions in the
class Qu[A,B;C,D].
THEOREM 2.2. A function feQa[A,B;C,D], for a>0, -1<B<A<L1l; -1<D<c<1, if
and only if there exists a function FeX[A,B;C,D] such that, for z€E,

1 (%1
1 1T a a "2
f(z)= 2 4 F(rz)dg (2.1)
0
PROOF. From (2.1), it follows that
1 é-—z é'l 611"'2
(a - 1)z f(z)+oz £'(z) = z F(z),

soO

(l-a)f(z)+azf'(z) = F(z)

and the result follows immediately from theorem 2.1.
THEOREM 2.3. Let fEQa[A,B;C,D] , 0<a <1 and -1<B<A<1l; -1<D<C<1l. Then
fex[A,B;C,D] and hence is univalent.

PROOF. Silvia [5] has proved that if flex[A,B;c,D], then so is

z

1+yl Yl—l

= >
Fl(z) Y t fl(t)dt, Re Y, 0. (2.2)
1

0

z

. . X . . 1
Using this result and the integral representation (2.2) with Y, =% " 1

for f:JW[A,B;C,D], we obtain the required result.
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For our next theorem, we need the following result due to Silvia [5].
oo
LEMMA 2.1. Let Fek{a,B;C,D] and F(z) = z + £ bnzn. Then
n=2
(C-D)+ (A-B)

e~
Ib,|< 5 .
and
¢-D + (_Z_\.:.B_)E:Eﬂl' IC-ZDI<1
6 3 -
Ip | <
(C=D) (€=2D) , (A=B)(C=D+1) | ,p|s;.
6 3
oo
THEOREM 2.4. Let FeQ [A,B;C,D], 0<a<l and £(z) = z + I anzn.
n=2
Then
1 r(c-D) + (A-B)
lagle s € 2 L
and
(c-D) . (A-B) (C-D+1) , |C-2D|<l
1 6 3 -
layla35ay
(C-D) (C-2D) , (A-B) (C-D+1) , |(C—2D)|>l
2 3
PROOF. Since feQa[A,B; c,p] , by theorem 2.1, the function
F(z) = (1l-a)f(z) + azf'(z)
-]
belongs to k[A,B;c,D]. Let F(z) = z + I bnzn.
n=2
Thus
© A © b n
(1-a)[z + I a_z" J+ az [1 + T na zn] =z + I °n?
n n n=2
n=2 n=2
or
o -] o
(1-a) I anzn +afnaz= I bnzn.
n=2 n=2 n=2
Equating coefficients of z" on both sides, we have
[(1-a) + an]an = b (2.3)
Now, using Lemma 2.1 and the relation (2.3), we obtain the required result.
-]
REMARK 2.1. Let FeK [A,B;1,-1] and be given by F(z) = z + I bnzn.
n=2
Then

b l< L (a-B+2).
21232

This result is sharp for the function FOEK[A,B,I,-l] and defined by

z
Fo(Z) _ (l;Aw) dw.
o (1-w)  (1+Bw)

3. THE CLASS Q [1-28,-1;1-2y,-1]

In definition 1.2, if we put A=1-28, B= -1; C=1-2y, D = -1, then we
have the following:
Definition 3.1. A function f, analytic in E, is said to be alpha-quasi-

convex of order B type y, if, and only if, there exists a function
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geC[l-Zy,—l] such that

H(a,f) = (l—a)f:(z) +a (Zf:(Z))I
g'(z) g'(z)

€ P[l-28,-l]

REMARK 3.1. Let g be analytic in E. Then gec[1-2y,-1] if and only if

(zg'(z))"'
g'(z)
Thus H(a,f)eP[1-28,-1] implies that

£'(z) , f(zf'(z))"
g'(z) g'(z)

Re >y, 2eE.

Re[(1-a) ] >8, zeE.

REMARK 3.2. It follows , from the definition 3.1, that feQa[LQB,-lﬂ=2y,—l]

if, and only if {(l-a)f+azf'} e k[1-28,-1; 1-2y,-1].

We now have the following: o
THEOREM 3.1. Let feQ [1-28, -1:;1-2y,-1] and be given by f(z)=z + I anzn.
n=2
Then we have, for nl2

a |<2(3-2Y)(4-2y) ...... (n-2y) [n(1-B)+B-y].
nlZ> n![l+a(n-1)]
This result is sharp and the equality holds for the function fo defined as
zZ
1 L i (é -2) 2-2 1
S = 2 (£ (1-y) (1-28)+(B-y) [1-(1-%) YNag, y#1,v# 3
1 7 1
1- = = -2
_J1 a a _ _ 2(1-8)¢t _ 1
£,(2)=9 7 2 L1z é [(1-2B)log(l-g)+ —T:E—__J g, y= 3
1
l—a‘ —(;-2
1z 0 ® [2(B-1)log(l-z)+(28-1)z]dz, «y=1
a

PROOF. Since feQa[l-ZB,-l;l-Zy,-l] , the function
F(z)=(1l-a)f(z)+azf'(2)

oo
belong to K[l-2B,-1;l-2y,-l]. Let F(z)= z + I bnzn.
n=2
Libera [6] has proved that , for n>2,
- =2y) e ... - -B)+B-
Ib_|< 2(3-2y) (4-2y) - (n-2y)[n(1-g)+8-y], (3.1)

Now, from relation (2.3), we have
b

_ n
n T IT¥a(n-1)
Using this and (3.1), we obtain the required result
THEOREM 3.2. Let 0<)<1 and 0<B<1l. Let f be defined as
1 2z 1
=3 J x T2 1

£(z) = § 2 z F(z)dc, L>1.

A_
0
and FeQu[l—ZB,-l;l-2y,—lJ where 0<A<l, a>0. Then feQa[l-2B,-l;l-ZY,-1]
PROOF. Let

Fl(2) = (1-a)F(z)+azF'(2), (3.2)
and let 1- % z 1 -2
£ (z) = = 2 R (t)at. (3.3)
1 A 0 1

Since FeQa[l-ZB,-l,l-Zy,-l] , it follows from remark 3.2 that

FleK [1-28,-1; 1-2y,-1] . We want to show that feQa[l—zB,-l; 1-2y,-1] ,

where Ll(z) = (l-a)f(z)+azf'(z). Now (3.2) can be written as



So,
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Fl(z) = (l-a)F(z)+azF'(z)
2- 2 2.
= az %z F(z))"',
and using this, we obtain from (3.3)
2
T O O R
fl(z) = N z 4 C (¢ F (L)) 'dt
(]
1 z 1 1 1
- x X T a "t
=3z c ®®  F(gy)raz
0
integrating by parts,
1 1 1 1 z 1 1
1- ¥ & -= = -1 T- -1
A A A
£,(2) = F 2 (20 % " F(z))-J F -5t Y TR &)
[}
1l (2 1
1- = = -2
-2 e 1 _ 1 A A
=3 F(z)+ X (a A)z 4 F(z) dg
0
1 1 11,1 - % BENEE
=alzP(z)I+a [ =(1- )+ =(= -1) ]z c F(z)dg
A A A A a o
z
21 1,
saz[i 27 lr (¢ 1- Lz 2 2 F(g)dg]
A A A
0
z
1 - % % -2
+(1l-a) [f z T F(g)dc].
0
= azf'(z)+(1l-a)f(2z). (3.4)

Now in (3.3) F eK[1-28,-1;1-2y,-1] and so fleK[l—ZB,ol;l-ZY,-l], where we
have used (2.2) with Y, = L -1,A=1-28,B=-1,C=1-2yand D=-1. Thus it

A

follows from remark 3.2 and the relation (3.4) that feQ“[l-ZB,-l;l-zy,-l],

and this completes the proof.
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