

SOME CLASSES OF ALPHA-QUASI-CONVEX FUNCTIONS

KHALIDA INAYAT NOOR

Mathematics Department
College of Science Education for Girls, Sitteen Road,
Malaz, Riyadh, Saudi Arabia.

(Received April 13, 1985 and in revised form May 30, 1986)

ABSTRACT. Let $C[C,D]$, $-1 \leq D < C \leq 1$ denote the class of functions $g, g(0)=0$, $g'(0)=1$, analytic in the unit disk E such that $\frac{(zg'(z))'}{g'(z)}$ is subordinate to $\frac{1+Cz}{1+Dz}$, $z \in E$. We investigate some classes of Alpha-Quasi-Convex Functions f , with $f(0)=f'(0)-1=0$ for which there exists a $g \in C[C,D]$ such that $(1-\alpha)\frac{f'(z)}{g'(z)} + \alpha\frac{(zf'(z))'}{g'(z)}$ is subordinate to $\frac{1+Az}{1+Bz}$, $-1 \leq B < A \leq 1$. Integral representation, coefficient bounds are obtained. It is shown that some of these classes are preserved under certain integral operators.

KEY WORDS AND PHRASES. Convex, starlike, quasi-convex, close-to-convex function, Integral representation, Alpha-quasi-convex functions.

AMS (MOS) Subject classification (1980) Codes: 30C45, 30C55.

1. INTRODUCTION

Let S, K, S^* and C denote the classes of analytic functions f : $f(z)=z+\sum_{n=2}^{\infty} a_n z^n$ which are respectively univalent, close-to-convex, starlike (with respect to the origin) and convex in the unit disc E . In [1], a new subclass C^* of univalent functions was introduced and studied. A function f belongs to C^* if there exists a convex function g such that, for $z \in E$,

$$\operatorname{Re} \frac{(zf'(z))'}{g'(z)} > 0.$$

The functions in C^* are called quasi-convex functions and $C \subset C^* \subset K \subset S$. It is also known that $f \in C^*$, if, and only if, $zf' \in K$. For complete study of C^* , see Noor [2].

A new class Q_α of α -quasi-convex functions has been defined and discussed in some details in [3]. A function f belongs to the class Q_α , if and only if there exists a convex function g such that, for $z \in E$

$$\operatorname{Re} \left[(1-\alpha) \frac{f''(z)}{g''(z)} + \alpha \frac{(zf'(z))'}{g'(z)} \right] > 0 \quad (1.1)$$

We note that $Q_0 = K$ and $Q_1 = C^*$.

In [4], Janowski introduced the class $P[A,B]$. For A and B , $1 \leq B < A \leq 1$, a function p , analytic in E with $p(0)=1$ belongs to the class $P[A,B]$, if $p(z)$ is subordinate to $\frac{1+Az}{1+Bz}$. Also, given C and D , $-1 \leq D < C \leq 1$, $C[C,D]$ and $S^*[C,D]$

denote the classes of functions f analytic in E with $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ such that $\frac{(zf'(z))'}{f'(z)} \in P[C, D]$ and $\frac{zf'(z)}{f'(z)} \in P[C, D]$ respectively. For $C=1$ and $D=-1$ we note that $C[1, -1] = C$ and $S^*[1, -1] = S^*$. Silvia [5] defines the classes $K[A, B; C, D]$ as follows:

Definition 1.1. A function $f: f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, analytic in E , is said to be in the class $K[A, B; C, D]$, $-1 \leq B \leq A \leq 1$, $-1 \leq D \leq C \leq 1$, if there exists a $g \in C[C, D]$ such that $\frac{f'(z)}{g'(z)} \in P[A, B]$.

It is clear that $K[1, -1; 1, -1] = K$ and

$$K[A, B; C, D] \subset K \subset S.$$

We now define the following:

Definition 1.2. Let $\alpha > 0$ be real and $f: f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ be analytic in E . Then $f \in Q_{\alpha}[A, B; C, D]$, $-1 \leq B \leq A \leq 1$, $-1 \leq D \leq C \leq 1$ if and only if there exists a function $g \in C[C, D]$ such that, for $z \in E$,

$$(1-\alpha) \frac{f'(z)}{g'(z)} + \alpha \frac{(zf'(z))'}{g'(z)} \in P[A, B].$$

It is clear that $Q_{\alpha}[1, -1; 1, -1] = Q_{\alpha}$.

2. MAIN RESULTS

We shall now study some of the basic properties of the class $Q_{\alpha}[A, B; C, D]$. From the definition 1.2, we immediately have:

THEOREM 2.1. Let $F(z) = (1-\alpha)f(z) + \alpha zf'(z)$, where $0 < \alpha < 1$ is real and $z \in E$. Then $f \in Q_{\alpha}[A, B; C, D]$, $-1 \leq B \leq A \leq 1$, $-1 \leq D \leq C \leq 1$ if and only if $F \in K[A, B; C, D]$.

We now give the integral representation for the functions in the class $Q_{\alpha}[A, B; C, D]$.

THEOREM 2.2. A function $f \in Q_{\alpha}[A, B; C, D]$, for $\alpha > 0$, $-1 \leq B \leq A \leq 1$, $-1 \leq D \leq C \leq 1$, if and only if there exists a function $F \in K[A, B; C, D]$ such that, for $z \in E$,

$$f(z) = \frac{1}{\alpha} z^{1-\frac{1}{\alpha}} \int_0^z \frac{1}{\zeta^{\frac{1}{\alpha}-2}} F(\zeta) d\zeta \quad (2.1)$$

PROOF. From (2.1), it follows that

$$\left(\frac{1}{\alpha} - 1 \right) z^{\frac{1}{\alpha} - 2} f(z) + \alpha z^{\frac{1}{\alpha} - 1} f'(z) = z^{\frac{1}{\alpha} - 2} F(z),$$

so

$$(1-\alpha)f(z) + \alpha zf'(z) = F(z)$$

and the result follows immediately from theorem 2.1.

THEOREM 2.3. Let $f \in Q_{\alpha}[A, B; C, D]$, $0 < \alpha < 1$ and $-1 \leq B \leq A \leq 1$, $-1 \leq D \leq C \leq 1$. Then $f \in K[A, B; C, D]$ and hence is univalent.

PROOF. Silvia [5] has proved that if $f_1 \in K[A, B; C, D]$, then so is

$$F_1(z) = \frac{1+\gamma_1}{\gamma_1} \int_0^z t^{\gamma_1-1} f_1(t) dt, \quad \text{Re } \gamma_1 > 0. \quad (2.2)$$

Using this result and the integral representation (2.2) with $\gamma_1 = \frac{1}{\alpha} - 1$ for $f \in Q_{\alpha}[A, B; C, D]$, we obtain the required result.

For our next theorem, we need the following result due to Silvia [5].

LEMMA 2.1. Let $F \in K[A, B; C, D]$ and $F(z) = z + \sum_{n=2}^{\infty} b_n z^n$. Then

$$|b_2| \leq \frac{(C-D)+(A-B)}{2},$$

and

$$|b_3| \leq \begin{cases} \frac{C-D}{6} + \frac{(A-B)(C-D+1)}{3}, & |C-2D| \leq 1 \\ \frac{(C-D)(C-2D)}{6} + \frac{(A-B)(C-D+1)}{3}, & |C-2D| > 1. \end{cases}$$

THEOREM 2.4. Let $F \in Q_{\alpha}[A, B; C, D]$, $0 < \alpha < 1$ and $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$.

Then

$$|a_2| \leq \frac{1}{1+\alpha} \left[\frac{(C-D)+(A-B)}{2} \right],$$

and

$$|a_3| \leq \frac{1}{(1+2\alpha)} \begin{cases} \frac{(C-D)}{6} + \frac{(A-B)(C-D+1)}{3}, & |C-2D| \leq 1 \\ \frac{(C-D)(C-2D)}{2} + \frac{(A-B)(C-D+1)}{3}, & |C-2D| > 1 \end{cases}$$

PROOF. Since $f \in Q_{\alpha}[A, B; C, D]$, by theorem 2.1, the function

$$F(z) = (1-\alpha)f(z) + \alpha zf'(z)$$

belongs to $K[A, B; C, D]$. Let $F(z) = z + \sum_{n=2}^{\infty} b_n z^n$.

Thus

$$(1-\alpha)[z + \sum_{n=2}^{\infty} a_n z^n] + \alpha z [1 + \sum_{n=2}^{\infty} n a_n z^{n-1}] = z + \sum_{n=2}^{\infty} b_n z^n$$

or

$$(1-\alpha) \sum_{n=2}^{\infty} a_n z^n + \alpha \sum_{n=2}^{\infty} n a_n z^n = \sum_{n=2}^{\infty} b_n z^n.$$

Equating coefficients of z^n on both sides, we have

$$[(1-\alpha) + \alpha n] a_n = b_n \quad (2.3)$$

Now, using Lemma 2.1 and the relation (2.3), we obtain the required result.

REMARK 2.1. Let $F \in K[A, B; 1, -1]$ and be given by $F(z) = z + \sum_{n=2}^{\infty} b_n z^n$.

Then

$$|b_2| \leq \frac{1}{2} (A-B+2).$$

This result is sharp for the function $F_0 \in K[A, B, 1, -1]$ and defined by

$$F_0(z) = \int_0^z \frac{(1+Aw)}{(1-w)^2 (1+Bw)} dw.$$

3. THE CLASS $Q_{\alpha}[1-2\beta, -1; 1-2\gamma, -1]$

In definition 1.2, if we put $A=1-2\beta$, $B= -1$; $C=1-2\gamma$, $D= -1$, then we have the following:

Definition 3.1. A function f , analytic in E , is said to be alpha-quasi-convex of order β type γ , if, and only if, there exists a function

$g \in C[1-2\gamma, -1]$ such that

$$H(\alpha, f) = (1-\alpha) \frac{f'(z)}{g'(z)} + \alpha \frac{(zf'(z))'}{g'(z)} \in P[1-2\beta, -1]$$

REMARK 3.1. Let g be analytic in E . Then $g \in C[1-2\gamma, -1]$ if and only if

$$\operatorname{Re} \frac{(zg'(z))'}{g'(z)} > \gamma, \quad z \in E.$$

Thus $H(\alpha, f) \in P[1-2\beta, -1]$ implies that

$$\operatorname{Re} \left[(1-\alpha) \frac{f'(z)}{g'(z)} + \alpha \frac{(zf'(z))'}{g'(z)} \right] > \beta, \quad z \in E.$$

REMARK 3.2. It follows, from the definition 3.1, that $f \in Q_\alpha[1-2\beta, -1; 1-2\gamma, -1]$ if, and only if $\{(1-\alpha)f + \alpha zf'\} \in K[1-2\beta, -1; 1-2\gamma, -1]$.

We now have the following:

THEOREM 3.1. Let $f \in Q_\alpha[1-2\beta, -1; 1-2\gamma, -1]$ and be given by $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$. Then we have, for $n \geq 2$

$$|a_n| \leq \frac{2(3-2\gamma)(4-2\gamma) \dots (n-2\gamma)[n(1-\beta)+\beta-\gamma]}{n! [1+\alpha(n-1)]}.$$

This result is sharp and the equality holds for the function f_0 defined as

$$f_0(z) = \begin{cases} \frac{1}{\alpha} z^{1-\frac{1}{\alpha}} \int_0^z \zeta^{\frac{1}{\alpha}-2} (\zeta(1-\gamma)(1-2\beta)+(\beta-\gamma)[1-(1-\zeta)^{2-2\gamma}]) d\zeta, & \gamma \neq 1, \gamma \neq \frac{1}{2} \\ \frac{1}{\alpha} z^{1-\frac{1}{\alpha}} \int_0^z \zeta^{\frac{1}{\alpha}-2} [(1-2\beta) \log(1-\zeta) + \frac{2(1-\beta)\zeta}{1-\zeta}] d\zeta, & \gamma = \frac{1}{2} \\ \frac{1}{\alpha} z^{1-\frac{1}{\alpha}} \int_0^z \zeta^{\frac{1}{\alpha}-2} [2(\beta-1) \log(1-\zeta) + (2\beta-1)\zeta] d\zeta, & \gamma = 1 \end{cases}$$

PROOF. Since $f \in Q_\alpha[1-2\beta, -1; 1-2\gamma, -1]$, the function

$$F(z) = (1-\alpha)f(z) + \alpha zf'(z)$$

belong to $K[1-2\beta, -1; 1-2\gamma, -1]$. Let $F(z) = z + \sum_{n=2}^{\infty} b_n z^n$.

Libera [6] has proved that, for $n \geq 2$,

$$|b_n| \leq \frac{2(3-2\gamma)(4-2\gamma) \dots (n-2\gamma)[n(1-\beta)+\beta-\gamma]}{n!}, \quad (3.1)$$

Now, from relation (2.3), we have

$$a_n = \frac{b_n}{1+\alpha(n-1)}$$

Using this and (3.1), we obtain the required result

THEOREM 3.2. Let $0 < \lambda \leq 1$ and $0 \leq \beta < 1$. Let f be defined as

$$f(z) = \frac{1}{\lambda} z^{1-\frac{1}{\lambda}} \int_0^z \zeta^{\frac{1}{\lambda}-2} F(\zeta) d\zeta, \quad \frac{1}{\lambda} \geq 1.$$

and $F \in Q_\alpha[1-2\beta, -1; 1-2\gamma, -1]$ where $0 \leq \lambda \leq 1$, $\alpha \geq 0$. Then $f \in Q_\alpha[1-2\beta, -1; 1-2\gamma, -1]$

PROOF. Let

$$F_1(z) = (1-\alpha)F(z) + \alpha z F'(z), \quad (3.2)$$

and let

$$f_1(z) = \frac{1}{\lambda} z^{1-\frac{1}{\lambda}} \int_0^z \zeta^{\frac{1}{\lambda}-2} F_1(\zeta) d\zeta. \quad (3.3)$$

Since $F \in Q_\alpha[1-2\beta, -1; 1-2\gamma, -1]$, it follows from remark 3.2 that

$f_1 \in K[1-2\beta, -1; 1-2\gamma, -1]$. We want to show that $f \in Q_\alpha[1-2\beta, -1; 1-2\gamma, -1]$, where $f(z) = (1-\alpha)f(z) + \alpha zf'(z)$. Now (3.2) can be written as

$$F_1(z) = (1-\alpha)F(z) + \alpha z F'(z)$$

$$= \alpha z^{2-\frac{1}{\alpha}} \frac{1}{(z^{\frac{1}{\alpha}} - 1)^2} F(z),$$

and using this, we obtain from (3.3)

$$\begin{aligned} f_1(z) &= \frac{1}{\lambda} z^{1-\frac{1}{\lambda}} \int_0^z \zeta^{2-\frac{1}{\alpha}} \frac{1}{\zeta^{\frac{1}{\alpha}} - 1} \frac{1}{F(\zeta)} d\zeta \\ &= \frac{\alpha}{\lambda} z^{1-\frac{1}{\lambda}} \int_0^z \zeta^{\frac{1}{\lambda}-1} \frac{1}{(z^{\frac{1}{\alpha}} - 1)^2} F(z) d\zeta \end{aligned}$$

So, integrating by parts,

$$\begin{aligned} f_1(z) &= \frac{\alpha}{\lambda} z^{1-\frac{1}{\lambda}} \left[z^{\frac{1}{\lambda}-1} \frac{1}{(z^{\frac{1}{\alpha}} - 1)^2} F(z) - \int_0^z \left(\frac{1}{\lambda} - \frac{1}{\alpha} \right) \zeta^{\frac{1}{\lambda}-2} \frac{1}{(z^{\frac{1}{\alpha}} - 1)^2} F(\zeta) d\zeta \right] \\ &= \frac{\alpha}{\lambda} F(z) + \frac{\alpha}{\lambda} \left(\frac{1}{\alpha} - \frac{1}{\lambda} \right) z^{1-\frac{1}{\lambda}} \int_0^z \zeta^{\frac{1}{\lambda}-2} \frac{2}{F(\zeta)} d\zeta \\ &= \alpha \left[\frac{1}{\lambda} F(z) \right] + \alpha \left[\frac{1}{\lambda} \left(1 - \frac{1}{\lambda} \right) + \frac{1}{\lambda} \left(\frac{1}{\alpha} - 1 \right) \right] z^{1-\frac{1}{\lambda}} \int_0^z \zeta^{\frac{1}{\lambda}-2} \frac{2}{F(\zeta)} d\zeta \\ &= \alpha z \left[\frac{1}{\lambda} z^{-1} F(z) + \frac{1}{\lambda} \left(1 - \frac{1}{\lambda} \right) z^{1-\frac{1}{\lambda}} \int_0^z \zeta^{\frac{1}{\lambda}-2} \frac{2}{F(\zeta)} d\zeta \right] \\ &\quad + (1-\alpha) \left[\frac{1}{\lambda} z^{1-\frac{1}{\lambda}} \int_0^z \zeta^{\frac{1}{\lambda}-2} \frac{2}{F(\zeta)} d\zeta \right]. \\ &= \alpha z f'(z) + (1-\alpha) f(z). \end{aligned} \tag{3.4}$$

Now in (3.3) $F_1 \in K[1-2\beta, -1; 1-2\gamma, -1]$ and so $f_1 \in K[1-2\beta, -1; 1-2\gamma, -1]$, where we have used (2.2) with $\gamma_1 = \frac{1}{\lambda} - 1$, $A = 1-2\beta$, $B = -1$, $C = 1-2\gamma$ and $D = -1$. Thus it follows from remark 3.2 and the relation (3.4) that $f \in Q_\alpha[1-2\beta, -1; 1-2\gamma, -1]$, and this completes the proof.

ACKNOWLEDGEMENT. I am indebted to the referee for helpful comments which improved the exposition of this work.

REFERENCES

1. NOOR, K.I., and THOMAS, D.K., On quasi-convex univalent functions, Internat. J. Math. & Math. Sci. 3 (1980), 255-266.
2. NOOR, K.I., ON quasi-convex functions and related topics, Int. J. Math. Sci., to appear.
3. NOOR, K.I., and AL-QBOUDI, F.M., Alpha quasi convex univalent functions, Carr. Math. J. 3 (1984), 1-8.
4. JANOWSKI, W., Some external problems for certain families of analytic functions, Ann. Polon. Math., 28 (1973), 297-326.
5. SILVIA, E.M., Subclasses of close-to-convex functions, Internat. J. Math. & Math. Sci. 3 (1983), 449-458.
6. LIBERA, R.J., Some radius of convexity problems, Duke Math. J. (1964), 143-158.

Special Issue on Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk