

A NOTE ON CERTAIN SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS

SHIGEYOSHI OWA

Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577, Japan

LIU LIQUAN

Department of Mathematics
Heilongjiang University
Harbin, China

WANCANG MA

Department of Mathematics
Northwest University
Xian, China

(Received June 25, 1987 and in revised form July 31, 1987)

ABSTRACT. The object of the present paper is to show a result for functions belonging to class $P'(1-\alpha, 0)$ which is a subclass of close-to-convex functions in the unit disk U .

KEY WORDS AND PHRASES. Close-to-Convex of order α , Class $P'(\alpha)$, Class $P'(1-\alpha, 0)$, subordination.

1980 AMS SUBJECT CLASSIFICATION CODE. 30C45.

1. INTRODUCTION

Let A denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad (1.1)$$

which are analytic in the unit disk $U = \{z: |z| < 1\}$. A function $f(z)$ belonging to A is said to be in the class $P'(\alpha)$ (according to Goodman [4]) if and only if it satisfies the condition

$$\operatorname{Re}\{f'(z)\} > \alpha \quad (1.2)$$

for some α ($0 \leq \alpha < 1$) and for all $z \in U$. Note that $P'(\alpha)$ the subclass of close-to-convex functions of order α in the unit disk U . Further, let $P'(1-\alpha, 0)$ (according to Goodman [4]) be the subclass of A consisting of all functions which satisfy the condition

$$|f'(z) - 1| < 1 - \alpha \quad (1.3)$$

for some α ($0 \leq \alpha < 1$) and for all $z \in U$.

It is clear that $P'(1-\alpha, 0)$ is the subclass of $P'(\alpha)$ for $0 \leq \alpha < 1$. Nunokawa, Fukui, Owa, Saitoh and Sekine [1] showed that functions in $P'(1-\alpha, 0)$ are starlike in $|z| < r_1$, where r_1 is the root of the equation

$$\log \left\{ \frac{1 - (2/(3-\alpha))^2 (r - (1-\alpha)r^2/2)^2}{1 - r^2} \right\} + \sin^{-1}((1-\alpha)r) = \pi.$$

Also, Fukui, Owa, Ogawa and Nunokawa [2] proved that functions in $P'(\alpha)$ are starlike in $|z| < r_2$, where r_2 is the smallest root in $[0, 1)$ of the equation

$$\sin^{-1} \frac{2(1-\alpha)r}{1 - (2\alpha-1)r^2} + \log \frac{1}{1 - r^2} = \pi.$$

For the functions $f(z)$ and $g(z)$ belonging to A , we say that $f(z)$ is subordinate to $g(z)$ in U if there exists an analytic function $w(z)$ in U such that $|w(z)| < 1$ for $z \in U$ and $f(z) = g(w(z))$. We denote by $f(z) \prec g(z)$ this subordination. In particular, if $g(z)$ is univalent in U the subordination $f(z) \prec g(z)$ is equivalent to $f(0) = g(0)$ and $f(U) \subset g(U)$ (cf. [3]).

2. MAIN RESULT

In order to prove our main result, we have to recall here the following lemma due to Miller and Mocanu [5].

LEMMA. Let $q(z)$ be an injective mapping of \bar{U} onto \bar{Q} , with $q(0) = 1$, such that $q(z)$ is regular on \bar{U} except for at most one pole on ∂U . Let $p(z) = 1 + p_1 z + p_2 z^2 + \dots$ be analytic in U with $p(z) \neq 1$. If there exists a point $z_0 \in U$ such that $p(z_0) \in \partial U$ and $p(|z| < |z_0|) \subset Q$, then $z_0 p'(z_0) = m w_0 q'(w_0)$, where $m \geq 1$ and $w_0 = e^{i\theta_0} = q^{-1}(p(z_0))$.

Applying the above lemma, we derive

THEOREM. Let the function $f(z)$ defined by (1) be in the class $P'(1-\alpha, 0)$. Then

$$\frac{f(z)}{z} \prec 1 + \frac{(1-\alpha)z}{2}. \quad (1.4)$$

PROOF. Let $q(z) = 1 + (1-\alpha)z/2$ and $p(z) = f(z)/z$. It is clear that the result holds true if $p(z) \equiv 1$ for $z \in U$.

Assume that $p(z) \neq 1$ for $z \in U$ and the subordination $p(z) \prec q(z)$ does not hold in U . Then there exists a point $z_0 \in U$ such that $p(z_0) \in \partial q(U)$ and $p(|z| < |z_0|) \subset q(U)$. Therefore, applying the lemma, we get

$$\begin{aligned} f'(z_0) &= z_0 p'(z_0) + p(z_0) \\ &= n w_0 q'(w_0) + q(w_0) \\ &= \frac{m(1-\alpha)w_0}{2} + \frac{(1-\alpha)w_0}{2} + 1 \\ &= 1 + \frac{(m+1)(1-\alpha)w_0}{2}, \end{aligned} \quad (1.5)$$

where $m \geq 1$ and $|w_0| = 1$. Thus

$$|f'(z_0) - 1| = \frac{(m+1)(1-\alpha)}{2} \geq 1-\alpha, \quad (1.6)$$

which contradicts the hypothesis that $f(z) \in P'(1-\alpha, 0)$. So we must have $p(z) \prec q(z)$ in U . This completes the proof of Theorem.

Finally, we have

COROLLARY 1. Let the function $f(z)$ defined by (1.1) be in the class $P'(1-\alpha, 0)$.

Then

$$\operatorname{Re} \left\{ e^{i\beta} \frac{f(z)}{z} \right\} > 0,$$

where $|\beta| \leq \pi/2 - \sin^{-1}(1-\alpha)/2$.

COROLLARY 2. Let the function $f(z)$ defined by (1.1) be in the class $P'(1-\alpha, 0)$.

Then

$$\operatorname{Re} \left\{ \frac{f(z)}{z} \right\} > 0.$$

ACKNOWLEDGEMENTS. The authors would like to thank the referee of the paper for his thoughtful encouragement and numerous helpful advices.

REFERENCES

1. NUNOKAWA, M., FUKUI, S., OWA, S., SAITO, H. and SEKINE, T., On the Starlike Boundary of Univalent Functions, to appear.
2. FUKUI, S., OWA, S., OGAWA, S. and NUNOKAWA, M., A Note on a Class of Analytic Functions Satisfying $\operatorname{Re}\{f'(z)\} > \alpha$, Bull. Fac. Edu. Wakayama Univ. Nat. Sci. 36 (1987) 13-17.
3. DUREN, P.L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
4. GOODMAN, A.W., Univalent Functions. Vol. II, Mariner Publ. Comp. Inc., 1983.
5. MILLER, S.S. and MOCANU, P.T., Second Order Differential Inequalities in the Complex Plane, J. Math. Anal. Appl. 65 (1978) 289-305.

Special Issue on Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk