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Abstract. On ordered sets (posets, lattices) we regard topologies (or, more general conver-
gence structures) which on any maximal chain of the ordered set induce its own interval
topology. This construction generalizes several well-known intrinsic structures, and still
contains enough to produce interesting results on for instance compactness and connected-
ness. The "maximal chain compatibility” between topology (convergence structure) and
order is preserved by formation of arbitrary products, at least in case the involved order
structures are conditionally complete lattices.
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INTRODUCTION

Parts of §§2 and 3 of the present note can be regarded as an extension of Vainio
[9]. Terminology is as in [9]; crucial definitions and notations are recapitulated in next
section. Let P be a partially ordered set (short: poset), endow P with a topology (or,
more generally: a convergence structure) ¢ such that all mazimal chains of P inherit their
own wnterval topologies. The resulting space (P,q) is called an i-space, and the structure ¢
an i-structure (i-topology, or i-convergence) on P.

Specially on lattices, i-space compatibility provides an excellent realm for study of i.a.
connectedness and compactness (§3). Partly, this is because completeness (conditional
completeness) can be equivalently described as completeness (conditional completeness)
of all maximal chains.

Examples of i-spaces abound. Whenever a poset is endowed with a topology, which
is finer than interval topology and for which all maximal chains are compact sets, i-
space compatibility follows. Every poset admits a finest i-convergence, as well as a finest
i-topology. Several well-known intrinsic convergences are i-structures, as demonstrated
in §2.

For conditionally complete lattices, an arbitrary product of i-spaces is again an i-space
(§4). This is of interest, because intrinsic topologies (convergences) of ordered structures
do not behave well visavi formation of products (cf. Erné [1]). In §4 a few category
theoretical remarks on ¢-convergences are included.
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The use of convergence structures instead of (the more special) topologies is motivated
by works of i.a. M. Erné and D. C. Kent, which show a filter theoretical approach to
intrinsic topologies on ordered sets provides an elegant and powerful method. Several
important and natural structures, such as order convergence (cf. §1) are not topological.
Moreover, R. N. Ball has created completion theory for lattices using Cauchy structures
(i.e. Cauchy filters of uniform convergence structures) — still another example where
classical topology does not suffice.

1. PRELIMINARIES
A convergence (structure) on a set S is a map ¢ : § — 2F(5) (F(S) = the set of all
proper filters on S), which for all x € S satisfies

(1) [z] € ¢(«). ([z] is the trivial ultrafilter derived from z.)

(2) Feg(r)and § D F = G € q(z).

(3) F € q(z) = Fnlz] € g(z).

Since we wish order convergence (see below) to constitute a special example of our theory,
we can not assume F,G € g(z) = FNG € ¢(z). The definition of convergence as stated in
axioms (1), (2), (3) above dates back to Kent [5]. The couple (5, ¢) is called a convergence
space.

For A C S, let g4 denote the convergence ¢ inherited to A. Of course, all topologies are
convergences. The topological modification top(q) is the finest topology on S coarser than g.
The category of convergence spaces (morphisms: continuous maps) is cartesian closed, a
fact we will apply in §4. In Gihler [3] convergence spaces are treated in considerable
depth. Following [3] and Vainio [9] a convergence space (S, q) is called connected, if the
topological modification (S,top(g)) is, i.e. if all continuous maps from (5, ¢) to the two-
point discrete space are constant maps. A set in a given convergence space is a connected
set, if the corresponding subspace is a connected convergence space.

Partially ordered sets (posets) will be denoted by P, lattices by L. Quasi-ordered
sets (no anti-symmetry assumed!) will be used in §4, primarily as tools. Totally ordered
subsets of P are called chains ; a chain which is not a proper subset of any other chain
of P is called a mazimal chain in P. For A C P, A*(A%) is the set of all upper bounds
(lower bounds) of A. If A = {a}, we write a*(a®). A poset is order dense, if |z, y[# 0
for all 2 < y. Definitions of complete (conditionally complete) lattices and subcomplete
(conditionally subcomplete) sublattices are the standard ones. The lattice translations
L — L are the maps z — aV z,z — a Az, for any @ € L. Any chain J in L is, of course,
a lattice in its own right, and for S C J the indices in the expressions V;S,VS tell in
which lattice the l.u.b. is formed, provided it exists (dual notation for g.l.b.).

A poset endowed with a convergence is called T}j-ordered, if all sets a*,a* are closed.
We will use several intrinsic convergence structures on a given poset P, i.a. interval topology
t(P) (O. Frink) and order convergence o(P) (D. C. Kent). The former is defined as the
coarsest T;-ordered topology on P, and the latter is given by

F € o(P)(z) & AF* and VF* both exist, and both equal z.
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Hereby,
F*=U{F*:F€F}and Ft = U{F*: F € F}.
In any lattice L, the classical order topology (G. Birkhoff) equals top(o(L)).
We are now ready to proceed to ordered topological spaces and their maximal chains.

2. DEFINITION AND EXAMPLES OF :-SPACES

Let ¢ be a convergence on an arbitrary poset P. The pair (P, gq) is an i-space (g is
an i-convergence, or an i-topology on P) , if for any maximal chain J of P the equality
t(J) = ¢ holds. Since interval topologies on chains are Hausdorff (even T5), any i-space
(P. q) satisfies

t<yand F € q(z)Ng(y) = F hasno trace to any chain containing = and y.

We also note any Tj-ordered space (P,q) is an i-space, if and only if ¢(J) > ¢; for all
maximal chains J of P. However, there are i-spaces which are not Tj-ordered. Clearly.
on any poset all Tj-ordered topologies yielding compact maximal chains are automatically
i-topologies.

EXAMPLE 1. Every poset P admits a finest i-convergence s(P), which determines
Rennie’s chain topology r(P). (A set S in P is r(P)-open, if and only if SNJ is a t(J)-open
set for all maximal chains J. This structure was referred to by Rennie [7].) Of course.
7(P) is the finest i-topology on P. In general, there is no coarsest :-convergence or coarsest
i-topology on a given poset. Indeed, let S; (Sz) be the set of all open angular regions
in the plane R? with vertex at (1,0) (at (0,1)). The restriction of &; (S2) to ]0,1[x]0.1]
determines the topology 7, (72) on ]0,1[x]0,1[. Now, both 7; and 7, are i-topologies on
the poset ]0,1[x]0,1[ (endowed with natural order), but neither their g.l.b. topology nor
their g.1.b. convergence are i-structures.

EXAMPLE 2. Among all i-topologies on a given poset P admitting closed maximal
chains, there is a coarsest one denoted by w(P). Indeed, given the maximal chains J of P,
let w(P) arise from the sub-base of closed sets {a* N J,a* NJ : a € J}. It is easily seen
w(P) has the desired properties; also note that for P =]0,1[x]0,1[, no set of the form a*
or at is w(P)-closed. There are even i-spaces in which no maximal chain is closed, cf. the
lattice {0,a,b,1}, a and b non-related, endowed with the topology whose closed sets are
generated by {a,b}, {0}, {1}. We note that if the maximal chains of an i-space (P,q) are
closed sets, then top(q) is an i-topology on P.

The following example shows that on posets, which are not lattices, order convergence
misbehaves.

EXAMPLE 3. Let P be the subposet of R? consisting of the strictly negative part of
the z-axis, all y-axis for y > 1, and the point (1,0) = a. Clearly, o(P)(a) = {[a]}, which
means the restriction of o( P) to the maximal chain containing « is strictly finer than the
interval topology of that chain.

From now on, in this section we will restrict our attention to lattices only. Our first
aim is to generalize two lemmata of Vainio [9], originally proved assuming conditional
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completeness. First we mention the obvious

LEMMA 4. Let L be any lattice and F a filter on L arising from some filter base B of
sets B for which VB and AL B ezist. Then, for allz € X

Feo(L)z) e VL{ALB: B € B},Ar{VLB: B € B} both ezist and both

equal z.

LEMMA 5 (cf. Vainio [9,Lemma 3]). Let L be any lattice, J a mazimal chan of L,
and S a subchain of J. Then,

VS exists = V1S exists and equals V;S, and dually.

PROOF. Assume V35S = a,a € S, and let 3 < @ be an L upper bound of S. Then,
s < B < aforall seS. Of course, 3 € S. Thus, 8 < o would mean J is not a maximal
chain. Hence 8 = a, and we have revealed « is the smallest L upper bound of S.0

Example 3 shows Lemma 5 cannot be extended to posets.

LEMMA 6. (cf. Vainio [9,Lemma 7]). For an arbitrary lattice L, any convergence
structure between t(L) and o(L) is an i-structure.

PROOF. Let J be any maximal chain of L, take z € J, and denote the ¢(J) neighbor-
hood filter of = by F. Since t(J) equals o(J), Lemma 4 gives F has a base B consisting
of bounded J-intervals B such that V;{A;B : B € B} and Aj{VsB : B € B} both exist
and both equal 2. (Note that any bounded J-interval possesses l.u.b. and g.lL.b. in J.)
According to Lemma 5, the index L can replace the index J in the above expressions, and
thus, F is a base of a filter on L order-converging towards =. Hence, o(L) is an i-structure.
Since t(L)y > t(J) and t(L) < o(L), we get t(L) is an i-structure, too.o

COROLLARY 7. On every lattice L, o(L) < s(L). This result is not true for arbitrary
posets (cf. Ez. §).

EXAMPLE 8. In an arbitrary lattice, there is a host of well-known convergence struc-
tures in between interval topology and otder convergence. Erné [2] mentions among the
topologies, e.g. interval topology, new interval topology, Lawson topology, bi-Scott topo-
logy, Rennie’s L-topology, lim-inf topology, Birkhoff’s order topology, and among the
convergences (through which some of the previous topologies can be described), e.g. in-
terval convergence, lim-inf convergence, and order convergence. In view of Lemma 6, we
know all of them are i-structures.

The remainder of the paper will give further motivation for investigating i-spaces.

3. COMPACTNESS AND CONNECTIVITY

Let L be an arbitrary lattice. We say a property p of L is described by mazimal chains,
if

L satisfies p & All maximal chains of L satisfy p.
Kogalovskii [6] proves completeness is described by maximal chains. We will note Lemma 5
and Rennie [7, Theorem 1] together imply that conditional completeness is described by
maximal chains (also, cf. Vainio [9]), and from this Kogalovskii’s result follows.
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LEMMA 9. In any lattice, the following properties are described by mazimal chains:
(1) convexity, (2) order density, (3) conditional completeness, (4) completeness.

PROOF. (3) Assume all maximal chains of L are conditionally complete, let S be a
chain of L with upper bound m, and let J be a maximal chain containing S and m. Hence
VS exists (Lemma 5), and L is conditionally complete according to Rennie [7, Theorem 1].
The converse statement is trivial (cf. for instance Vainio [9,Lemma 3]). (4) Assume all
maximal chains of L are complete, and let J; and J, be maximal chains with greatest
elements aj,as. Since a1 Vaz € Jy N Ja, then all maximal chains have the same grea-
test element, which proves L has a greatest element. Applying (3) above the proof is
completed.o

COROLLARY 10. A lattice is (conditionally) complete, if and only if all mazimal
chawns of the lattice are (conditionally) subcomplete.

Using i.a. Lemma 9 and the well-known fact that any chain J is complete (conditionally
complete), if and only if ¢(J) is compact (all bounded ultrafilters on J are ¢(J)-convergent),
we obtain the following two theorems.

THEOREM 11. For q an i-convergence on any lattice L, the following are equivalent:

(1) L is complete.

(2) (L,q) has compact mazimal chains.

If ¢ < t(L), but all mazimal chains of (L,q) still are closed sets, then expressions
(1) and (2) are equivalent to

(3) (L,q) is compact.

PROOF. For part (3), use the well-known fact that a lattice is complete, if and only if
it is compact in its interval topology.o

For L an arbitrary lattice, denote by w(L) the coarsest i-convergence on L admitting
closed maximal chains (w(L) is always a topology, cf. Ex. 2), and take w(L) < ¢ < s(L).

THEOREM 12. A lattice L is (conditionally) complete, if and only if all (bounded)
ultrafilters on L containing some mazimal chain of L are g-convergent.

We next improve Theorem 4 of Vainio [9]. Proofs are omitted; the reader is referred
to the well-known fact that any chain J is conditionally complete and order dense, if and
only if ¢(J) is connected, to Lemma 9, and to the proof of [9, Theorem 4]. Note that any
convexr subspace of an i-space s again an i-space. Definitions regarding connectivity of
convergence spaces are as in Gahler [3] or Vainio [9]. Below, L is always a lattice.

THEOREM 13. Every conditionally complete, order dense, convex sublattice of an
i-space (L,q) is connected.

THEOREM 14. Let L be conditionally complete, and let (L,q) be a T} i-space in which
all translations are continuous maps. Then, all connected components of (L,q) are order
dense, convez (and hence, conditionally complete) sublattices of L.

COROLLARY 15. In conditionally complete Ty i-spaces (L,q) with continuous tran-
slations, the connected components can be described as the mazimal order dense, convez
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sublattices of L.

Let X = (X, ¢q) be a convergence space and recall that (X, q) and (X, top(q)) yield the
same real-valued continuous maps, denoted by C(X). It is known (cf. Stone [8] ) that the
lattice C'(X) is conditionally complete, if and only if top(q) is extremally disconnected.
We next characterize conditional completeness of C(X) in terms of any i-structure ¢ on
C(X).

THEOREM 16. The lattice C(X) 1s conditionally complete, 1f and only if all mazimal
chains in C(X) are g-connected sets.

The proof is an easy consequence of Lemma 9 and of the fact that C(X) is order dense.

1. PRODUCTS OF i-SPACES
Category theoretical definitions are as in Herrlich [4].

At first, we will regard a somewhat more general (but from a category theoretical
point of view more natural) situation than i-space compatibility. The results will then be
applied to i.a. formation of products of i-spaces.

Let S be a quasi-ordered set endowed with a convergence ¢ such that for any maximal
chain J of S the inequality g5 > #(J) holds true. The corresponding category (morphisms:
_increasing continuous maps) is denoted by QCON and the full subcategory determined by
the partially ordered objects is called PCON. The first category is mainly a tool, used to
obtain Remark 18 below.

LEMMA 17. The concrete category QCON 13 topological.

PROOF. Let (S;,¢:)iesr be an arbitrary family of Q CON-objects, consider a set S and
set theoretical maps f; : S — S;,7 € I. Then, for any z,y € S, define

z<yin S & fi(z) < fi(y)in S;, alli € I.

F € q(w) =4 f,(]:) € q,-(f,'(a:)), alli € I.
Obviously, S is thus endowed with a quasi-order < and a convergence g. It remains to
prove the resulting space is a Q CON-object. Therefore, let J be a maximal chain in S,
and let J; be one maximal chain in S; containing the chain f;(J). For any i € I, denote
the restriction of f; to J by g;, and note that for « € J

at =Nier g7 (gi(@)™)
where o and g;(a)* are formed in the chains J and J;, respectively. Since all maps g,
are continuous, the sets ot (and dually, a*) are closed sets in ¢, and hence q; > t(J).0

There are interesting consequences of Lemma 17. Since QCON is a topological category,
Herrlich [4; Section 2.1, T(5)] quite easily gives QCON is a cartesian closed category. Po-
wer objects in QCON are the spaces CI.(S,T), i.e. the set of QCON-morphisms (between
given QCON-objects S and T) endowed with product order and continuous convergence
structure. Indeed, we obtain (all proofs omitted)

REMARK 18. The topological category QCON is cartesian closed, and contains PCON
as a quotient-reflective subcategory; hence PCON is cartesian closed.
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Needless to say, Lemma 17 and Remark 18 do not apply to i-space compatibility.

It is an immediate consequence of the proof of Lemma 17 that QCON (and thus,
PCON) is closed under formation of arbitrary products and subspaces. This implies a
few remarks on orderability. We call a convergence space p-orderable, if there is a partial
order on X which makes (X,q) a PCON-object. (If the po-structure in question is a total
order and ¢ a topology, we get the well-known orderable spaces.) Then let PORD denote
the full subcategory of the convergence space category CON consisting of all p-orderable
spaces. Since CON is a topological category, any subcategory of this category which is
closed under formation of products and subspaces is reflective in it. Thus, PORD is a
reflective subcategory of CON.

The remainder of the paper deals with a special construction; products of i-spaces.
Consider a family (P;, g;):er of i-spaces, each P; being a poset and each ¢; a convergence.
Denote the product space by (P,q), i.e. P is the product poset and ¢ the product conver-
gence. Since PCON is closed under formation of arbitrary products, (P, q) is an ¢-space,
if and only if Ilg; < s(P). This condition is equivalent to continuity of all projections
pr, : (J,t(J)) = (P, q;), where J is an arbitrary maximal chain of P and ¢ € I. This is
satisfied at least, if for all 7,J as above, each set pr;(J) is a convez chain in P; (i. e. pr.(J)
is a convex subset of any maximal chain of P; containing it). The following lemma gives
a natural sufficient condition.

Let (L;);er be conditionally complete lattices, denote L = IIL;, and let J be a maximal
chain of L.

LEMMA 19. For each i € I, pri(J) 1s a convez chain in L;.

PROOF. Assume pro(J) not convex, and let h, be a "hole” in it. Define the subset A
of J by

z€ A& zeJand pro(z) > ha.
Let z € L be the element defined by pri(z) = Apr;(A) for ¢ € I,1 # a, and pro(z) = hq.
(The conditional completeness assumption implies Apr;(A) exists.) We now prove z € J
by showing z is order related to an arbitrary s € J.

If pro(s) > ho, then s € A, and for i # a pri(s) > Apri(A) = pri(z), which gives s > .

If pro(s) < hq, then s < z for all z € A, and hence for ¢ # a pr;(s) < Apr.(A) = pr.(z),
and s < z follows.

Now, hy = pra(z) € pra(J), a contradiction.o

THEOREM 20. The product of given i-spaces (L;, ¢:)ier s an t-space, +f every L, 15 a
conditionally complete lattice.
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