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ABSTRACT. This paper contains first a definition of the asymptotic expansion at
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i. INTRODUCTION.

The basic idea of the asymptotic behaviour at infinity of a distribution one can

find already in the book of L. Schwartz [I]. To these days many mathematicians tried

to find a good definition of the asymptotic behaviour of a distribution. We shall

mention only "equivalence at infinity" explored by Lavoine and Misra [2] and the

"quasiasymptotic" elaborated by Vladimlrov and his pupils [3]. Brichkov [4] intro-

duced the asymptotic expansion of tempered distributions as a useful mathematical

tool in quantum field theory. His investigations and definitions were turned just

towards these applications. In [4] one can find cited literature in which asymptotic

expansion technique, introduced by Brichkov, was used in the quantum field theory.

This is a reason to study S-asymptotlc expansion.

2. DEFINITION OF THE S-ASYMPTOTIC EXPANSION.

In the classical analysis we say that the sequence {n(t)} of numerical functions

u (t)is asymptotic if and only if n+l(t) O(n(t)), t =. The formal series nl n
is an asymptotic expansion of the function u(t) related to the asymptotic sequence

{n(t) if
k

u(t) [ Un(t) O(@k(t)), t (2.1)
n=l

for every k N and we write

u(t) . un(t) {*n(t) }, t
n=l

(2.2)

When for every n N Un(t) Cnn(t) Cn are complex numbers, expansion (2.2)

is unique, that means the numbers c can be determined in only one way.
n
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In this text F will be a convex cone with vertex at zero belonging to R
n

and

Z(F) the set of all real valued and positive functions c(h), h F. Notations for

the spaces of distributions are as in the books of Schwartz [I].

DEFINITION I. The distribution T " has the S-asymptotic expansion related to

the asymptotic sequence {c (h)} Z(F), we write it

T(t+h) U (t,h) {c (h)} llh[l h F (2.3)
n n

n=l

where U (t,h) " for n N and h r, if for every 0
n

<T(t+h), 0(t) > Z < Bn(t,h), p(t) > {Cn(h)}, l[hll , h F (2.4)
n=4

REMARK. i) In the special case Un(t,h) Un(t)Cn(h), un , n N, we shall

write

s
T(t+h) Z Un(t) Cn(h) [lh[l h (2.5)

n=l

and the given S-asymptotic expansion is unique.

2) To define the S-asymptotic expansion inRn), we have only to suppose that in

relation (2.4) T and U are in" and p in.n
Brichkov’s general definition is slightly different [5].

DEFINITION l’. The distribution g" has the asymptotic expansion related to

the asymptotic sequence {@n(t)} on the ray {ho, > 0} h Rn
o

g(ho-t) Z n(t,) {0)_n..} R, (2.6)
n=l

where c (t X) " for X X > 0 if for every
n o

<g(kho-t), (t) > E < Cn(t,%), (t) > {n(%) }, % (2.7)
n=l

Relation 2.6 can be transformed in

i << x ho>>f(x) e Z en(X,%) {@n(%)), % (2.8)
n=l

by the Fourier transform, if we take f(x) F-l[g(t)]; 0(x) F-l[(t)] and

F[n(t,%)] (2)n Cn(X,). We denote by F[0] the Fourier transform of 0 and by
nF-l[g] the inverse Fourier transform of g. Also, for x,t R

n
x,t E xiti.i=l

In his papers Brihkov considered only the asymptotic expansinons (2.8) and in

one dimensional case. We shall study the asymptotic expansion not im"(R) but in

the whole’(Rn), not only on a ray but on a cone in Rn. Our results enlarge

Brlchkov’s to be value for the elements of o’(Rn) (Corollary I), they are proved with

less suppositions (Propositions 5 and 6) or give new properties of the S-asymptotic.

A distribution belonging to" can have S-asymptotic expansion in" without

having the same S-asymptotic expansion in ’. Such an example is the regular

distribution f defined by the function

f(t) H(t) exp(I/(l+t2)) exp(-t) t R
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where

H(t) I, t 0 and H(t) 0, t < O.

It is easy to prove that for h R+
2 l-n e-hh2 (l-n)(t+h) 7.

(n-l)’ (I+ (t+h) exp(-t-h) l{ }, h .
n=l

But

U (t h) (I+ (t+h)2) l-n exp(-t-h), n N, h > 0
n

do not belong to’.
The regular distribution defined by the function

g(t) exp(l+ (l+t2)) exp(t), t R

belongs to but it is not in . It has S-asymptotic expansion in’:

2)l-n ehh2(l-n)(t+h) 7.
(n-l)’

(I + (t+h) exp(t+h) }, h

where F R+.
3. PROPERTIES OF THE S-ASYMPTOTIC EXPANSION.

PROPOSITION i. Let S ’ and T ’. If

T (t+h) s
7. Un(t,h) {cn(h)}, llh[l , h F

n=l

then the convolution

(S,T)(t+N) l (S * Un)(t,h) {Cn(h)} [[h[[ h F
n=l

(3.1)

PROOF. We know that

k k
<(S*T)(t+h), 0(t)> 7. <(S*Un)(t,h), 0(t)> <S*[T(t+h) 7. Un(t,h)], 0(t) >

n=l n=l

It remains only to use the continuity of the convolution.

COROLLARY I. If

T(t+h) _s 7. U (t h) {Cn(h)} [[h[[ h F
n=l n

then

T (k)’" (t+h) 7. u tk)’" (t,h) {Cn(h) ]]h]] , h F (3.2)
n

n:l

kl Dn) Nn N :NU{ 0where T (k) (Dtl T k (k kn) o o
n

PROOF We have only to take S 6<kjZ in Proposition I.

REMARK. Proposition i. is valued as well if we suppose that T " and S .
PROPOSITION 2. Let f U (t,h) and V (t), n N and h F, be the local

n n
integrable functions such that for every compact set K & R

n

f(t+h) l Un(t,h) {Cn(h)}, JJhJj h r, t K
n=l
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and
k

f(t+h) Z Un(t,h) /Ck(h) Vk(t), t K, h r
n=l

and llhll r(k,K), then for the regular distribution defined by f we have

(t+h) Z (t,h) {c (h)} llhll h r
n n

n=l

PROOF. The proof is a consequence of the Lebesgue’s theorem.

PROPOSITION 3. Suppose that T and T
2 belong to " and equal over the open set

which has the property: for every r > 0 there exists a B such that the ball
o

B(0,r) {x e Rn, llxll =< r} is in {a-h, h g llhll B }. If
o

Tl(t+h Z Un(t,h) {cn(h)}, llhll , h r
n=l

then

T2(t+h) Z Un(t,h) {Cn(h)}, llhll , h r
n=l

as well.

PROOF. We have only to prove that for every Ck(h

lira < [Tl(t+h)-T2(t+h)] / Ck(h) O(t)> O, 0 (3.3)

Let supp p =B(0,r). The distribution Tl(t+h)-T2(t+h equals zero over -h.

By the supposition there exists a B such that the ball B(0,r) is in {f-h, h I’,
o

llhll -> S }. This proves out relation (3.3).o
PROPOSITION 4. Let S and for 1 < m < n

D
t

S(t+h) .s l Ui(t,h {el(h)}, llhll , h F
m i=l

If the family {Vi(t,h), i N, h I’} has the properties: D
t Vi(t,h) Ui(t,h),

i N, h r and for a 0 (R), f o()d I, and for every 0 , k N
Rk

lira < [S(t+h) E Vi(t,h)]/Ck(h), o(tm)m(t) > 0
llhll+,h F i--4

where (t) --f O(t t
m

t dt thenm n mR

S(t+h) l Vi(t,h) {ci(h)}, l}hll , h r
i=l

PROOF. If p then O(t) Oo(tm)%m(t) + (t) where and
f (t t

m
tn) dt O.

mR
Now we have the following equality

k k
<[S(t+h) l Vi(t,h)], p(t)> <[S(t+h) l Vi(t,h)] Polm(t)>

i=l i=l
k t

<[D
t

S(t+h) F. Ui(t+h)] f
m

(t u
m

tn) du >
m i=l m

It remains only to use the limit in it and Corollary I.
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PROPOSITION 5. Suppose that S ’, r {h Rn, h (0,...,hm,...,0)}, where

m is fixed, 1 _-< m -<- n and

(D
t

S)(t+h) l Ui(t,h) {ci(h)}, llhll , h r
m i=l

If there exists Vi(t,h), DhmVi(t,h) Ui(t,h), i N and if ci(h), i N are

local integrable in h m and such that

hm
i(h) f ci(u) du as h

m m

then

S(t+h) l Vi(t,h) {i(h)}, llhll , h r
i=l

PROOF. By L’Hospital’s rule with the Stolz’s improvement we have for every

and k N
k

<S(t+h), p(t)> < I Vi(t,h), p(t)>

lim
i=l

h/,h r k(h)

lim
h+,hF

k

<(DtmS) (t+h), O(t)> < I Ui(t,h), 0(t)>
i=l

Ck(h)

These five propositions give how is related the S-asymptotic with convolution,

derivative, classical expansion and the primitive of a distribution. The next

proposition gives the analytical expression of Un(t,h) Un(t) Cn(h).
PROPOSITION 6. Suppose that T ’, F with nonempty interior,

T(t+h) Z u (t) Cn(h) llhll h r
n

n=l

If u # 0, m N, then u has the form
m m

m
u (t) Z P(t tn) exp(<<ak
m

t>>), m N
k=l

k k k Rn mwhere a (a ,a
n f and Pk are polynomials, the power of them less of k in

n
every ti, i l,...,n: <<x,t >> =i xiti.

PROOF. By Definition and our supposition

(3.4)

lim T(t+h)/c l(h) ul(t) 0 (3.5)

From relation (3.5) follows that u satisfies the equation

ul(t+ho) d(ho) u l(t) h F (3 6)
O

where

d(h lim c l(h+ho)/c (h)o I[ h ]].+=o,hF
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If ho is an interior point of F and e
k

is such element from R
n

for which all the

coordinates equal zero except the k-th which is 1. Then

u l(t+ho+eek) u l(t+ho) [d(eek) d(0)]u l(t+ho).

Hence the existence of Dhkd(h)h= a and

D
t Ul(t+ho) a

k Ul(t+ho), k-- n. (3.7)
k

We know that all the solutions of equation (3.7) are of the form Ul(t)=Clexp(<<al,t>>),
where C is a constant and a (a an).

The following limit gives u
2

<T(t+h),0(t)> <ul(t),O(t)> c l(h)
lim <u2,0>Ilhll+,hF c2(h)

By Corollary follows for i ,n

<(Dt ali)T(t+h),0(t)>
lim

i <(Dr ali)u2(t),0(t) >

llhil/-,hr c2(h) i

Two cases are possible, a) If (Dtl-al) u
2

O, i=l n, then

u2(t) C
2

exp(<<al,t>>).
b) If (D

t -ai)u2 # 0 for some i then (D
t -ai)u2(t) c exp(<<a2,t >>) and u

2
has

the form C
2

ex (<<al,t>>) + P (t tn) exp(<<a ,t>>) where P2 is a polynomial of

the power less of 2 in every ti, i=l,...,n.

In the same way we prove for every um.
PROPOSITION 7. Let T ’and fl Rn be an open set with the property: for every

r > 0 there exists a 8 such that the ball B(h,r)= for all h F, llhll > 8
r r

Suppose

m
T(t+h) 7. Un(t+h) {Cl(h),...,Cm(h)},

n=l
m

for any function c (h) from E(F), then T
m n

n=l
PROOF. The statement of this Proposition can be obtained from a proposition

proved in [6]. However, for completeness, we shall give the proof on the whole.

First we shall prove that if for every c (h)
mm

T(t+h) n__E1 Un(t+h)
lim < O(t)> 0 (3.8)

Ilhll+,hCF C (h)
m

then there exists a 8(0) such that

m
<[T(t+h) Z U (t+h)] O(t)> 0 h

n
n=l

Suppose the opposite. We would have a sequence h F llh II such that
n n

m

<[T(t+hn l Un(t+hn)], 0(t)> Pn # 0, n N
n=l

then we choose Cm(h) in such a way that Cm(hn) Pn and relation (3.8) would be false.
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We denote by 8o(p) infB(p). We shall prove that the set {8o(p), p 4} for every

compact set K C R
n

is bounded. Let us suppose the opposite; then there exists a

sequence {hk}, h
k

, llhkl and the sequence {#k(t)}, #k 6 such that

{ak#0 p=k m

P T=T- Z U<T(t+hk), (t)> Ak, p 0 p < k n=l
n

The constructio of the sequence {hk} and #k can be the following. Let k6
be such that 8o(#k) is a strict monotone sequence which tends to infinity, then

there exist {hk} F and e
k

> 0, k N such that 8o(#k_ I) +ek llhkll 8o(#k) ek"
Now, we shall construct the sequence {p(t)}, p for which we have

0, p#k
<T(t+hk) p(t)> lak, p=k

Let p(t) p(t) %l(t)-...-IPp_l#p_l(t), p > i. The numbers l we can find

in such a way that p(t) satisfies the sought property.

It is easy to see that <T(t+hk), k(t)> a
k

and <T(t+hk), p(t)> 0, k > p.

For a fixed p and k < p we can find , i=l,...,p-I so that for k=l,...,p-i

0 <T(t+hk) p(t)> Ak,p-l Ak, l-’" p-I Ak,p-i

Hence

+ ...+xP
p-i ,p-I Ak,p k=l,...,p-l, p > I.

As ,k # 0 for every k, this system has always a solution.

We introduce now a sequence of numbers {bk} b
k

sup{2klo (i) (t) i < k}
k

Then the function

(t) Z p(t)/bp K
p=l

and this series converges inK, thus in as well. With this

<T(t+hk),@(t)> Z <T(t+hk), p(t)/bp> ak/bk
p=l

If we choose c(h) such that c(hk) akJbk then <[T(t+h)/c(h)l,(t) does not

converge to zero when llhll /, h 6 F. This is in contradiction with (3.8). Hence,

for every compact set K there exists a 8o(K) such that <(t+h),(t)> 0,11hll a 8o(K),
h F, # K" That means that (t+h) 0 over B(0,r), llhll 8(r), h 6 F and

(t) 0 over B(h,r), JJhJJ 8(r), h F.

4. APPLICATION OF THE S-ASYMPTOTIC EXPANSION TO PARTIAL DIFFERENTIAL EQUATIONS.

As we mentioned in [4], one can find cited literature in which asymptotic expan-

sion technique (in" and in one dimensional case) was used in the quantum field

theory. We show how the S-asymptotic expansion in can be applied to solutions of

partial differential equations.

PROPOSITION 8. Suppose that E is a fundamental solution of the operator

L(D) l aaDa, aa R, (NQ0) n; L(D) 0

such that
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E(t+h) Z u (t,h) {c (h)} Ilhll h ic
n n

n=l

Then there exists a solution X of the equation

(4.2)

L(D) X G, G " (4.3)

which has S-asymptotic expansion

X(t+h) Z (G * un(t,h)) {cn(h)}, [[h[[ , h r.
n=l

PROOF. The well-known Malgrange-Ehrenpreis theorem (see for example [7], p. 212)

asserts that there exists a fundamental solution of the operator (4.1) belonging to. The solution of equation (4.3) exists and can be expressed by the formula

X E G. To find the S-asymptotic of X we have only to apply Propostition I.

REMARKS. If we denote by A(L(D),E) the collection of those T " for which the

convolution E * T and L(D)6 E * T exist in, then the solution X E * G is

unique in the class A(L(D),E) ([7], p. 87).

We can enlarge the space to which belongs G ([7], p. 216).

The fundamental solutions are known for the most important operators L(D).
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