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1. INTRODUCTION.

Associative operations on the positive real half-line which are uniformly close
have recently been characterized in [1]. In the present paper we turn to the study
of associative copulas which are uniformly close. Copulas play a fundamental role
in the theory of probabilistic metric spaces (see Menger [2] and Schweizer-Sklar [3]),
in probability theory (cf. Fréchet [4], Sklar [5] and [6]) as well as in the study
of nonparametric measures of dependence for random variables (see Schweizer-Wolff
[7]). We begin with some preliminary notions. From now on I will denote the closed
unit interval [0,1].

DEFINITION 1.1. A binary operation T on I is called an Archimedean t-norm if T

is continuous, associative, commutative, nondecreasing in each place, 1 is a unit and
T(x,x) < x whenever x is in (0,1).

The following result due to J. Aczél (f8]) and C.H. Ling ([9]) gives the
general representation for Archimedean t-norms.

THEOREM 1.1. A binary operation T on I is an Archimedean t-norm if and only if
there exists a continuous and strictly decreasing function f:I » [0Q,»] such that

£f(1) =0 and T(x,y) =f(-1)(f(x)+f(y)), where f(_l) stands for the function

£ 6o = £ min(x, £00))),  x €l0,%] . (1.1)
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In the case where f(0) = », we have simply f(_l) = f-l

and the corresponding
operation T is called strict; otherwise, T is said to be a non-strict Archimedean
t-norm.

DEFINITION 1.2. (cf. Sklar [5]). A copula is a two-place function C:I2 + 1
such that

(i) c(1,x)=C(x,1)=x, C(0,x)=C(x,0)=0 for all x in 1I;

(1i) C(yl,yz)—C(yl,xz)-C(xl,y2)+C(x1,x2) 2 0 for all pairs (xl,xz): (Yl,yz)

in 12 such that Xy < Y1 and X, < Yy
Any copula C is continuous and satisfies the inequalities:

W(x,y): = max(x+y-1,0) £ C(x,y) S min(x,y) = :M(x,y). (1.2)

Copulas play a fundamental role in probability theory since they are functions
connecting joint distribution functions of random variables with their margins.
Precisely, we quote here the following result due to A. Sklar.

THEOREM 1.2. Let X and Y be two positive random variables defined in a common
probability space with continuous distribution functions F, and FY’ respectively, and

X

with a continuous joint distribution HX ¥ Then there exists a unique copula Cx ¥
’ ’

such that
HX,Y(U’V) = Cyy(Fy(v),Fy(v))

for all u,v 2 0.

Copulas which are simultaneously Archimedean t-norms are especially interesting.
In particular, we have the following

THEOREM 1.3. (see Schweizer-Sklar [2]). Let T be an Archimedean t-norm
additively generated by a function f, i.e.

T(x,y) = T(E) (oy) = £ (E+E(3)), xy € 1. (1.3)

Then the following three conditions are pairwise equivalent:
(i) T is a copula;
(i1) £ is convex;
(iii) T satisfies the Lipschitz condition:

L7
N
.

T(z,y)-T(x,y) £ z-x whenever Xx,y,x € I and b4

2. STRICT T-NORMS BEING UNIFORMLY CLOSE COPULAS.

Let G = T(g) be a strict t-norm with a convex generator g. Thus
-1
G(x,y) = g (g(x)+g(y)), x,ye I

and, by Theorem 1.3, G is a copula. First, we are going to show how to construct
copulas F = T(f) which are uniformly close to G, i.e. such that for a given € > 0

one has

ITe)-T(ll = llF-6ll = sup |F(x,y)-G(x,y)| s €.

(x,y) € 12
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THEOREM 2.1. Given an € € (0,1) and a strictly decreasing convex function g
mapping the unit interval I onto [0,®], let ¢ be a concave bijection of [0,®) onto
itself satisfying the Ulam-Hyers inequality (see Hyers [10])

[o(x+y)= d(x)=8(y) | Sn: = g(1-¢)
for all x,y € [0,~). Put

-1

(¢ "o g)(x) for x e (0,1],

f(x): =

© for x = 0.
Then T(f)(x,y):=f-1(f(x)+f(y)), is a copula and
lre) - m@ |l s e

PROOF. The convexity of g jointly with Theorem 1.3 imply that T(g) is a copula.

Consequently, on account of (1.2),
~1
g (g(x)+g(y)) 2 xty-1

for all x,y € I . Take arbitrary u, v ¢ [0,°) € g8(I); then u=g(x) and

v=g(y) for some x,y € I whence
g ) 2 gt i) - 1
and therefore
-1 -1 -1 -1
g7  (@-g7  (v)| = g (min(u,v))=-g  (max(u,v))

= g L(min(u,v))-g ™  (min(u,v)+|u-v])

A

gL (min(u,v))~g "L (min(u,v))-g L (Ju-v])+1

-1
l-g (Iu-vl).
Now, for any x,y € (0,1], one has

ITCE) (o) -T(e) oy | = £ (E+Ey)) -2~ g ()42 (y)) |

| (g™Led) (£ G0+E (3)) =g L (g ()+8(y)) |

A

1-g L (|4 (£ )+ ()-8 (x)-g () )

1-g 7L (|6 (£ ) +E ()= (E X)) =4 (£ (y)) )

l-g—l(n) =€,

17

which proves the desired inequality because the expression just estimated vanishes

whenever x=0 or y=0.
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Observe that our bijection ¢ has to be increasing. In fact, ¢ being concave is

continuous and therefore strictly monotonic; if ¢ were decreasing we would get
05 6(y) S ¢(x) + 0(y) = d(xty) S [$0C)+(y) = (x+y) | = n

for all x, y € [0,@), whence we would deduce the boundedness of ¢ which is a contra-
diction. Therefore, ¢-1 is increasing, too, and the concavity of ¢ implies the

-1
convexity of ¢ = and henceforth f. Thus T(f) is a copula and the proof is completed.
REMARK 2.1. Bijections ¢ spoken of in Theorem 1.3 actually exist. Indeed, take

any positive real number c and any strictly increasing and concave mapping
Y:[0,®) > [0,%n) with v(0) = 0. Then the mapping ¢:[0,*) > [0,®) given by the formula

$(x) = ex + Y(x), x € [0,%),

satisfies all the conditions desired.
Another result in that spirit is the following
THEOREM 2.2. Given an € € (0,1) let f and g be two convex and strictly

decreasing functions from I onto [0,*] such that

£ -] ste 2.1

1
3
for all x & [0,#). Then the operations T(f)(x,y): = f-l(f(x)+f(y)) and
T(g) (x,y): = g-l(g(x)+g(y)) are two associative copulas such that

lTce) - o)l = .

PROOF. In order to show the last inequality fix arbitrarily a pair (x,y) € I2.
We shall distinguish two cases.

1) max (x,y) 2 1-e. Since T(f) and T(g) are copulas we get from (1.2) that
they are both minorized by W and majorized by M. Consequently,

IT(f)(x,y)-T(g)(x,y)IS M(x,y)-W(x,y)=min(x,y)-max(x+y-1,0) < l-max(x,y) S €.

2) max(x,y) < l-€. Then x+€ as well as y+t belongs to (0,1). Relation (2.1)
implies that

g'l(f(t)) S t+ %e for all t € I ,

Thus

g(xt 36) S £(x) and g(y+ 1) s £ (2.2)
and, subsequently, on account of (2.1), the monotonicity of g_l, (2.2) and
Theorem 1.3 (iii), we get
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T(5) (,y) = £ (E+H () S g7 (F+H () + 5 €

#A

-1 1 1,,.1 1 1 1
g (g(x+3+e(y+P)+3e= T(g) (xt3e,y+39 +3¢

(T(8) (x+ 3,3+ 3€) = T(8) (x,y+ 36)) + (T(8) (x, 7+ 3¢)

T(8) (x,))+T(8) (x,y)+ 3 € S (et 3 -x)+(y+ 3¢ -y)
+ T(g) (x,y) +§e- T(g) (x»y) + € .

Interchanging the roles of f and g we obtain also that T(g)(x,y) s T(f)(x,y) + €,
which finishes the proof.

Theorem 2.1 and 2.2 can easily be applied to the study of nonparametric measures
of dependence for random variables. Given two random variables X, Y in a common

probability space and with a unique copula Cx we recall from [7] the forms of two
’

Y
well-known measures of independence:

1(X,Y) = 4 sup {IC (u,v)-uv| : u,ve I}
X,Y
11
o(X,Y) =12 « [ [ IC (u,v)—uvldu dv.
XY
00
Then we have
COROLLARY 2.1. Given an € € (0,1) let ¢ be a concave bijection of [0,~) onto
itself satisfying the Ulam-Hyers inequality

[¢x+y)-¢(x)-0(y) | 5 -1n(1-€)

for all x,y € [0,2). Assume that X and Y are two random variables with
Cyy(Usv): = exp[-0(¢™ (-1n v) + ¢ " (-1n ¥))1,

u,v € TI. Then
T(X,Y) = 4¢ and o(X,Y) S 12¢ .

COROLLARY 2.2. Given an € € (0,1) let f be a strictly decreasing convex func-
tion mapping the unit interval I onto [0,»]. Assume that X and Y are two random
variables with Coy = T(£). If |1 (x)-e™| S ¢ for all x € [0,%), then T(X,¥) S 4e
and o(X,Y) S 12¢ .

3. NON-STRICT T-NORMS BEING UNIFORMLY CLOSE COPULAS.

Let Fa’ a > 0, be the family of all strictly decreasing functions mapping the
unit interval I onto the interval [0,a]. Obviously, Fa is a subfamily of the collec-
tion C(I) of all continuous real functions defined on I because the ranges of members
from Fa are connected. In what follows, C(E) will always stand for the Banach space
of all continuous real functions on a compact metric space E; C(E) is assumed to be
endowed with the usual uniform convergence norm.

THEOREM 3.1. The transformation T: Fa > C(Iz) given by the formula

TCE) (x,9): = £ (E)+E(y)), %,y € I, £ ¢ F,
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is continuous.

PROOF. Take any sequence (fn) N of elements from Fa uniformly convergent to an
ne

f e Fa and fix arbitrarily an € > 0. Since f-1 is uniformly continuous one may find

a § > 0 such that for all s,t € [0,a]
|f-1(s)-f-1(t)| < e  provided that Is-t| <§ . (3.1)

As f is the uniform limit of (fn) N’ there exists an no € N such that for all n 2 n0
ne

and x € I one has lfn(x)-f(x)l < 6. Consequently, taking s: = f(x) and t: = fn(x) in
(3.1) we get Ix-f—l(fn(x))l < e for all n 2 o and x € I; hence

lfn-l(z)—f-l(z)| < e for all n 2 n and 2 € [0,a]. (3.2)
On the other hand, putting
m_(8) (x,y): = min(g(x)+g(y),a), x,y €I, g¢ F,

one may easily check that the sequence (ma(fn)) N tends uniformly to ma(f) on the
ne

unit square. Therefore, there exists an nl € N such that

nzan

, iwplies |[m (£f)-m ()|l <& . (3.3)

Finally, for any pair (x,y) € 12 one has (see (1.1))

1,1 (e, o+t )~ (s Go+£ () |

IT(E) (esy)=T(E) Goy) |

£, ™ (my (£ oy =y (6) () |
s £, my (£ (o)) -£ 7 (my (£ ) (xuy)) |
+ 17 m, (5 ) Gy £ () ay)) |

< de + e =c¢

whenever n € N, n 2 max(no,nl), by means of the subsequent use of (3.2), (3.3) and
(3.1). This shows that

Ir¢ep-1®)ll » 0 as n»>e=

and finishes the proof.

As an immediate consequence of this result we obtain the following

THEOREM 3.2. Given an € > 0 let g be a strictly decreasing and convex function
mapping I onto [0,a]. Then there exists a § > 0 such that for all strictly

decreasing and convex surjections f: I + [0,a] fulfilling the condition

[l£-gll < ¢

the associative copulas

(

T(5) ()= TV 0+ 5, (@) uy)=e ™ e)+e()), xoy € T,
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are e-uniformly close, i.e.
-1l < €.

Observe, however, that Theorem 3.2 has an existence character (''there exists a
§ > 0"). The following result shows how to produce associative copulas T(f) e-close
to T(g) but requires stronger assumptions on the given generator g and refers only to
some specific generators f.

THEOREM 3.3. Given an € > 0 let g be a strictly decreasing and convex function
from I onto [0,a] such that

m: = inf {lsszisgizl' : x,y e I, x#y } > 0. (3.4)
Assume ¢ to be any concave bijection of [0,a] onto itself such that
|¢(x)-x| s % me, x € [0,a], (3.5)
and put f: = ¢-1° g. Then the operations
(@) ()i = 8D g+ and T(O) xuy): = £ (E+EGN),
represent e-uniformly close associative copulas, i.e.
I -1l < € . (3.6)
PROOF. Obviously, relation (3.4) implies that
lgt-gt )| s % Ix-yl . x,y € [0,a). (3.7
On the other hand, assumption (3.5) leads immediately to the Ulam~Hyers inequality
[$(xcty) =0 x)-0(y)| = mee (3.8)

for all x,y € [0,a] such that x+y is in [0,a], which, in particular, forces ¢ to be
strictly increasing (cf. the proof of Theorem 2.1) and hence T(f) to be a copula.

To prove (3.6), fix a pair (x,y) € 12 and consider the following four cases:

(a) T(f) (x,y)=T(g) (x,y)=0;

(b) both T(f)(x,y) and T(g)(x,y) are positive;

(e) T(g)(x,y) = 0 < T(£) (x,y);

(@) T(£)(x,y) = 0 < T(g)(x,y).

We have to show that

Y,y = | T(E) () -T(e) (x,0) | 5 ¢

which becomes trivial in case (a). Assuming (b) one gets
vy = | E@HE ) - @)+ () |
= |l @+ N - G +e) |

s L aerE - -s N ] 5 €
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by means of the definition of £, (3.7) and (3.8).
In case (c) one has g(x)+g(y) 2 a > f(x)+£(y) whence

L+ =g GEE+H () -2 @)

Y(x,y)

A

2 (a-0(E(+E())) S 2@ -4(EGR+E())

2 (BEGHEM)-0(E+H () S €,

on account of (3.7) and (3.8), again.
Finally, if (d) occurs then g(x)+g(y) < a = f(x)+f(y) whence

YY) = g7 (a0+a() -8 (@) § ta-g()-g(y)
s L@ g+ EW -2 s 1 2kn - 2e < ¢
m m “3 3 ’
because of (3.7) and the relation
|f&%@ﬂ)|$%me,tfl,

resulting directly from (3.5) and the definition of f. This completes the proof.
REMARK 3.1. Any continuously differentiable and convex surjection

g: I » [0,a] such that g'(1) < 0 satisfies all the requirements concerning the

function g occuring in Theorem 3.3. 1In fact, convexity implies that g' is increasing

whence g'(x) < g'(1) <0, x € I, i.e. g is strictly decreasing. On the other hand,

for any x,y € I, x#y, one has

E(X)-g(x)l =g'W)] =-g'A) 2g' Q) =:m >0

x-y )

for some A between x and y; therefore inf ISSE%EELZlIE L > 0, as desired.
X,y€l y
xty
4. REVERSE IMPLICATIONS.
Having two uniformly close Archimedean t-norms F and G, a natural question
arises whether they admit uniformly close generators. In other words, if F=T(f),
G=T(g) and

16 @eorg-£ D E+EGN | sen xy e T, .1)
we ask whether these exist two positive constants a and B such that
|af(x)-Bg(x)| s e, =xe€1 . (4.2)

The answer, in affirmative, is trivial in the case where both T(f) and T(g) are
non-gtrict, say, f maps I onto [0,a] and g(I) = [0,b] for some a,b ¢ (0,~). Then,

taking a=B: = ;5- we get

+b

|laf-ag|| s assup £(t) + asup g(t) = a(atb) = ¢
tel tel

and obviously, T(af)=T(f) as well as T(ag)=T(g).
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If one of the generators f and g is bounded whereas the other is not, then auto-
matically relation (4.2) fails to hold for any positive a and B . Therefore, it
remains to consider the case where both f and g are unbounded. Observe that € < 1
are the only interesting constants in (4.1) since, plainly, for any two strictly

decreasing functions f and g mapping the unit interval I onto [0,~] one has
lget -t 1s)] s 1 (4.3)
for all s, te [0,%]. Nevertheless even very regular e-uniformly close strict t-norms

(copulas), € < 1, may fail to have close generators. To visualize this, take

%—1 for x(O,l] -1n x for x € (0,1]

f(x): = and g(x): =

o for x=0 © for x=0;

then N )
o "—X—xﬂ,_xy for (x,y) € [0,1]7\{(0,0)}
T(£) (x,y) = £ (£(x)+f(y)) =

0 for (x,y) = (0,0)

and

T(g) (x,y) = & 1 (g(x) +8(y)) = xy.
The continuous function
Y (x,y): = T(£) (x,y) - T(g) (x,y),

vanishes on the boundary of the unit square; therefore, the value “}’” = max 2|)’(x,y)|

(x,y)el
is attained at an interior point of the unit square. Since
(34'/—-5— i—'/:) is the only critical point of ¥ in (0,1)2 and ¥(z) = §(5/5-11) > 0
we have
=X _ . -
s Y(x,y) = ey X S g :=}(5/5-11) < 0.0903. (4.4)

Thus, the copulas T(f) and T(g) are Eo—uniformly close, but for any positive

numbers o and B the difference
af (x) - Bg(x) = % + Blnx - a

tends to infinity as x approaches zero from the right.
What about the distance between f-1 and g_l? In the light of (4.3) we always have

d(x): = lf-l(x)-g-l(x)| <1 for x € [0,=]. (4.5)

On the other hand, since f~1(0) = g-l(O) =1 and lim f_l(x) = lim g-l(x) =0, the
-1 —l X XFro
continuity of f ~ and g forces d to be upper-bounded by an a priori given positive

constant except for a compact subinterval of (0,*). One may expect however, that
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having (4.1) we get d(x) £ € for x 2 0. This is not true: taking f and g as above
(see (4.4))

-1 -
e (£ Go+E(y)) -7 (g0 +8(1)) | = 0.0903, x,y € T,
and a standard calculation proves that

d(x) = |f-1(x)—g-1(x)| = IT%; —e-x| > % for an x € (2.6, 2.7).

Nevertheless, one may show that
d(x) < 0.20364 for all x € [0,=],

which is definitely more interesting than (4.5).

In the general case we were able to state only the following

PROPOSITION 4.1. For any two strictly decreasing convex and unbounded generators
f,g: I + [0,®] such that ||T(f)-T(g)|| < € < 1 there exists a positive 8§ < 1 such
that £ 1(x)-g L (x)| s 6 for all x € [0,®].

PROOF. As we have remarked before, the distance function d: = If_l-g—ll does
‘not exceed € outside a compact interval [a,B] € (0,®). Since f and g and hence
also f_l and g-l are necessarily continuous so is the distance function d and it

suffices to take

6: = max(e, max d(x))
xe[o,B]

which, plainly, is strictly less than one.

This, however, is by no means satisfactory because the important question
whether the (not necessarily linear) function € * §(e) tends to zero as € + 0,
remains unanswered.
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