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ABSTRACT. We show that convergence spaces with continuous maps and metric spaces with
contractions, can be viewed as entities of the same kind. Both can be characterized by
a "limit function" A which with each filter F associates a map AF from the underlying
set to rhe extended positive real line. Continuous maps and contractions can both be
Characterized as limit function preserving maps.

The properties common to both the convergence and metric case serve as a basis for
tne definition of the category, CAP. We show that CAP is a quasitopos and that, apart
from the categories CONV, of convergence spaces, and MET, of metric spaces, it also

contains the category AP of approach spaces as nicely embedded subcategories.
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space, cartesian closed, hereditary.
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1. INTRODUCTION.

In [17] the categories TOP of topological spaces and continuous maps and pq-METn
of extended pseudo-quasi-metric spaces and non-expansive maps were embedded in a common
supercategory. The idea behind this embedding being that topological spaces and metric
spaces can be viewed as objects of the same type, in the sense that they both can be
described by a '"distance between points and sets'. Starting with a pq-MET°° space (X,d)
this distance is the usual one given by 8(x,A) := 1n£ d(x,a). Starting with a topolo-
gical space (X,% ) a distance can be defined by §(x,A) := 0 if x € A and 8(x,A) := o if
x ¢ A. A notion of distance has been axiomatized in [17] in such a way as to general-
ize both the metric and topological cases and resulted in the definition of the catego-
ry AP of approach spaces and contractions.

There are several advantages to this.

In the first place that of unification, e.g. the notions of compactness (in TOP)

and of total boundedness (in pq-METm) which turn out to be special cases of a measure
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of compactness in AP [18] and which in turn makes a concept introduced by C. KURATOWSKI
in [16] a canonical categorical notion.

A similar situation presents itself for the notions of connectedness (in TOP) and
Cantor's "kettenzussamenhang'" (in MET) [2], [19].

In the second place there are several classes of important topological spaces, e.g.
spaces of measures with the weak topology and spaces of random variables with the topo-
logy of convergence in measure which can more naturally be equipped with AP-structures
such that the topological structures are their TOP-coreflections [17].

In order to study these concepts and spaces it however soon became clear that we
would need a theory of convergence in AP. We develop such a concept of convergence by
means of assigning "limit functions" to filters, and moreover we show that AP can be
completely characterized by four axioms about limit functions; two fundamental axioms
-one on limit functions of principal ultrafilters and another on limit functions of
comparable filters- a third axiom of a pretopological nature on limit functions of in-
tersections of filters and a fourth one on limit functions of (Kowalsky-) diagonal fil-
ters [15].

Using this convergence-description of AP we obtain a very elegant characterization
of initial structures in AP. AP is a topological construct in the sense of [1], [10],
[11]. However from a categorical point of view some desirable properties are missing.
For topologists and analysts, cartesian closedness is one such property [7], [9], [20],
[21].

The existence of nice function space objects is indeed an important advantage in homo-
topy, topological algebra, and infinite dimensional differential calculus. The topo-
logical construct becomes extremely nice to work in when apart from being cartesian
closed it also is hereditary, i.e. a quasitopos [5], [22], [23]. AP is neither carte-
sian closed nor hereditary. The situation is similar to the classical ones. Neither
TOP nor pq-MET°° is a quasitopos. By weakening the axioms 'bigger' categories with nicer
properties result. For example CONV is a quasitopos containing TOP, and pqs-MET°° is a
quasitopos containing pq-METm. By dropping the diagonal axiom and weakening the pre-
topological axiom on limit functions we introduce the supercategory CAP of convergence
approach spaces. CAP is a quasitopos and moreover it contains both quasitopoi CONV and
pqs-MET°° as nicely embedded subcategories. From this embedding it then follows that
convergence spaces and extended pseudo-quasi-semi metric spaces can be viewed as enti-
ties of the same type, both being characterized by means of limit functions of filters.

Moreover also AP is nicely embedded in this supercategory.

2. PRELIMINARIES.

If X is a set then the set of all filters on X shall be denoted F(X).
If F € F(X), then the set of all ultrafilters finer than F# shall be denoted U(F).
If F = {X} then we write shortly U(X).

For any collection A of subsets of X we denote stackx aQ :={BcX|3Aaea:
A c B}. If Q consists of a single element A we put shortly stackxA and if moreover A
consists of a single point a then we put stackxa. If no confusion can occur, we drop
the subscript and simply write stack @ a.s.o..

If (Sj) is a family of sets, then elements of their product M S, shall

jeJ

. jEJ

sometimes be denoted in a functional notation, e.g. s where for all jeJ: s(j)es,.
J

H
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ﬂ§+ stands for [0,»] and all suprema and infima are taken infﬁ+. The following result

shall be useful.

PROPOSITION- 2.1. If F € F(X) and ¢ € n U then there exists a finite set

U_c U(F) such that U o(U) €F tueU(3)
o QLEIJO

PROOF. Suppose not, in that case the family
3 u X\o(W)| Ue U(F)}

has the finite intersection property and thus is contained in some "l.lo e U(F). Then
however X\O(TIO) € 110 which is a contradiction. [}

An extended pseudo-quasi-metric space (shortly =-pg-metric space) is a pair (X,d)

where

d:Xxx-»]R+

fulfils (i) v x € X : d(x,x) = 0 and (ii) ¥ x,y,z € X : d(x,y) £ d(x,z) + d(z,y).
The map d is called an extended pseudo-quasi-metric (shortly =-pg-metric). If d is
moreover symmetric, everywhere 'quasi-" ("q-") is dropped.

Given two =-pg-metric spaces (X,d) and (X',d') a function f : X » X' is called
non-expansive if d' o (fxf) s d.

The category with objects =-pq-metric spaces and morphisms non-expansive maps is
denoted gg-METw. See also [13], [14].

An approach space is a pair (X,8) where

fulfils

(1) vae2X, vxea: s(x,A) =0

(D2) ¥ xeX: 6(x,9) =

(D3) v A,Be2X, vxeX: 8(x,AUB) = 8(x,A) A 8(x,B)
(na)VAezx,Vxex,VEeﬁ+:

s(x,A) s 6(x,A8)) + ¢
(e)

where A := {y € X|8(y,A) s €}.

The map § is called a distance.

Given A € ZX we denote
§, + X —->:m+
: x > §(x,A).

Given two approach spaces (X,8) and (X',8') a function £ : X + X' is called a contrac-

tion if for all x € X and A € 2x B
8'(f(x),f(A)) s 8(x,A)
or equivalently, if for all A c 2X :

1
6f(A) of s 8.



420 E. LOWEN and R. LOWEN

3. CHARACTERIZATION OF AP VIA A CONVERGENCE THEORY.

In this section we shall give alternative characterizations of both approach
spaces and contractions.

Let X € |SET|. We recall the Kowalsky diagonal operator @ [15] defined as fol-
lows. For any index set J, any collection of filters (3.].):]eJ on X, and filter & on
J :

1=
DUZ ey P FZE} 32F 33..
In the case the collection of filters is a selection on X in the sense that we have a

map

5:X— FX)
: x — S(x)

then we put shortly © (S,3) for m((S(y))yex, 3.
In the sequel we require the following results. Easy proofs are left to the

reader.

PROPOSITION 3.1. Let (3j)jeJ be a collection of filters on X and 3 a filter on J,
then the following properties hold :
1°®((3.) Fr= v nF,.

=g Fe3 jeF
2° If (gl)leL is a family of filters on Jand 3 = n 9 then @((3‘ )

leL
n O((3 ), Ql).
leL
3°®(3)

5€J’3) =

eJ’

O (U 3.

jﬂ’ T n-u(3> 1’3’

h) JEJ

4° If each 3’ , j € J is ultra and J is ultra then ®((3 ) F) is ultra.

jer’
THEOREM 3.1. If (X,8) € |AP| then the map

A F(X) — izﬁ

M P A
fulfils

(CAL1) For any x € X : A (stack x)(x) = 0.

(caL2) Fc g = A(8) s M(F).

(PRAL) For any family (:}j)jeJ of filters on X :

ACn F )=supx(3')
je 3 es
(AL) For any F € F(X) and any selection of filters (S(y))yex on X :
MBD(S,F)) s A(F) + sup AM(S(y))(y).
yeX
Moreover, for any x € X and A c X :

8(x,A) = inf AU (x).
U eU(stack A)

PROOF. (CAL1) follows from (D1) whereas (CAL2) follows from the fact that F c &

implies U(§) c U(3).
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To prove (PRAL), let (3J. )jeJ c F(X). One inequality follows from (CAL2), to show the
other one observe that for all W e U( N 3j) and U € U there exists j € J and

€J
W e U( 3J.) such that U e W3 . Consequgntly we have

A(n F))
jes
sup 6
cl.l.eU( n 3 )Ue‘lL
jed
= sup sup sup w
jeJ YieU(ﬂ ) WE\Y
= sup A( 3' ).

jed
To prove (AL) let us first suppose that 3 e U(X) and that for all y € X :
S(y) € U(X) too. Now put ¢ := su A(S(y))(y). Then for any D € ®(S,3), by Pro-
position 3.1.1°, there exists F e 3 such that for all y € F : D € S(y), and conse-
quently

8(y,D) s M(S(Y)y) s ¢
Thus D(e) € 3 and it follows from (D4) that
6D s BD(C) + ¢
S sup 61"‘ + €
FeF
S AMF) + e

By the arbitrariness of D e ® (S,3) and Proposition 3.1.4° it follows herefrom that

A0(%,3) = sup 8
pe®(S,3F)

S A(F) + ¢

Second, let us now suppose 3 and all S(y), y € X are arbitrary filters on X, let

again € := ;gg A(S(y))(y) and for each R € N U(S(y)) let €Eg 1= Sup MR (y))(y).

yeX yeX
Then by straightforward verification we have

€ = sup R (3.1)
Ren U(S(y))
yeX
By the foregoing result we know that for any R € N U(S(y)) and WUe U(F) :
yeX
MO(R,U)) s AMWU) + eg (3.2)

Further, by Proposition 3.1.2° and 3° we also have

®(8,F) = N n O (R,W) (3.3)
Ren U(S(y)) UeU(F)
yeX
Combining (3.1), (3.2), (3.3) and upong applying (PRAL) it follows that
MO(S,3)) s AM(3) + «.

To prove the final claim of the theorem, first from the fact that for any
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WU € U(stack A) we have A € U one inequality is clear. Second, by definition of A
and applying complete distributivity we obtain

inf A(W) = sup inf 69('1.1.)
U eU(stack A) e N u UeU(stack A)
wueU(stack A)
By Proposition 2.1, for each 6 € n «£ we can find Ue c U(stack A) finite
U eU(stack A)
such that Ac U 8(W). Consequently by (D3), we obtain
UeU
6
inf AW < sup 8
W eU(stack A) 6e u (u e())
weU(stack A) MUYy
< 6A
which proves the remaining inequality. .

THEOREM 3.2. If X € |SET| and
A FX) SR
is a map fulfilling (CAL1l), (CAL2), (PRAL) and (AL) then the map
x —
§ ¢ X x 2 >]R+

(x,A) — inf A(W)H(x)
Y eU(stack A)

is a distance on X.
Moreover, for any F e F(X) :

M3F) = sup sup &
UeU(F ) ve W

U
PROOF. (D1) follows from (CAL1), (D2) follows from the fact that the infimum over an
empty set is infinite, and (D3) follows from the fact that for any A,B c X :

U(stack AUB) = U(stack A) U U(stack B). Before tackling (D4), we prove the final

claim of the theorem. Let the map A' be defined as

A F(X) —>ﬁf

F sup sup SU.
WUeU(F) vew
Now. let Y € U(X). Then first we have
At(u) = sup 6U
Ue W
= sup inf A(W)
Ue U WeU(stack U)
s a(w). (3.4)
Second, by complete distributivity and (PRAL) it follows that
A'(UW) = sup inf A(W)
UeW WeU(stack U)
= inf AC n 8(U)). (3.5)

e M U(stack U) UeW
UeW
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Now for any 6 € M Uf(stack U) and any U € W we have U & 8(U) and thus we have
Vel
n 6(U) ¢ U and it follows from (CAL2) that
veW

A(W) s AC 0 B(W)).
Ve WL

By the arbitrariness of 8 it follows in combination with (3.5) that
ACW) s at(w).
Together with (3.4) this shows that A and A' coincide on ultrafilters.
By definition of A' and the fact that A fulfils (PRAL) it then follows that A' = A. In

order to prove now (D4) let A c X, ¢ EIR and choose any W e U(AE))
for some y € A(e) and for all U e U(stack A) ¢

Now suppose that

e < A(UN(y)
= 2'(W(y) = sup &(y,U).
e T

This implies that for all W € U(stack A) there exists Uy € W such that € <5(y Uu)
By Proposition 2.1 we can then find 'ul,...,'ll e U(stack A) such that A c U Uui
and then it follows from (D3) that i=1

n
< inf §(y,U
€ im1 (y, (ui)

n
= 6()" U u )
i=1 Uy

s S(Y'A)

which is in contradiction to the choice of y. Thus for all y € A(E) we can find
S(y) € U(stack A) such that

AMB()(y) s .

(e)

For y ¢ A put S(y) := stack y and then put

g' a2 sup AM(S(y))(y).
yeX
Now consider the diagonal filter © (S,¥%) then A € r;A(E)S(y) and thus too
Ae®(S,W). From Proposition 3.1.4° it then also follows that ® (S ,¥ ) € U(stack A)
and from the definition of 8§ and (AL) it then follows further that for any x € X :

8(x,A) s MO (S,¥W))(x)
s A(W)(x) + ¢
s A(W)(x) + €.

From the arbitrariness of W e U(stack A(E)) and the definition of § it then finally

follows that
8(x,4) 5 8(x,a8)) 4 ¢

The combined results of Theorems 3.1 and 3.2 give yet another way to describe the ob-
jects of the category AP.

In what follows objects of AP shall then often also be denoted (X,A) where A then
is a map on F(X) fulfilling (CAL1), (CAL2), (PRAL) and (AL).

the morphisms of AP using this new desctiption of objects.

We shall characterize
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THEOREM 3.3. If (X,)), (X' )A') |AP| and f : X > X' is a function then the following

are equivalent :

1° f is a contraction
2° ¥v3 € F(X) : A'(stack f(F)) o £ s A(F)
3° v 3 € UKX) : A'(stack £(3)) o £ s A(F).

PROOF. 1° => 2° : from Theorem 3.1 we obtain for any F e F(X) :

A (stack £(ZF)) o £

= sup sup 8lo f
® eU(stack £(F)) WeW "

< sup sup &) o f
wer(F) vew V)

s sup sup SU
UeU(F) ve U

= A(F).

2° => 3° : clear.

3° => 1° : from Theorem 3.2 we obtain for any A ¢ X @

§! of = inf At(W) o f
£(8) ¥ e U(stack £(A))
= inf A'(stack F(W)) o £
A eU(stack A)
= inf ACW)
U e U(stack A)
= GA. »

4. THE QUASITOPOS CAP

DEFINITION 4.1. Given X € |SET| a map

A F(X) —>]§§

is called a convergence-approach limit if it fulfils (CALl), (CAL2) and the following
weakening of (PRAL) :
(CAL3) For all 3,8 € F(X) : A(Fng) = A(F) v A(8). The pair (X,A) is called a

convergence-approach space.

DEFINITION 4.2. Given convergence-approach spaces (X,A) and (X',)A') a function

f : X > X' is called a contraction 1f it fulfils :

(c) For all & € F(X) : A'(stack £(F)) o f s AMF).

In the sequel, a convergence-approach limit and a convergence-approach space will be
denoted shortly a CAP-limit and a CAP-space respectively.

We recall that a category of structured sets which is fibre-small and has the pro-

perty that all constant maps between objects are morphisms is called a construct [1],
[11].
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If we denote CAP the category with objects all CAP-spaces and morphisms all con-
tractions, then we obtain the following result, the verification of which is quite tri-

vial.
PROPOSITION 4.1. CAP is a construct. L]

A construct is called topological [11] if it is finally (or equivalently initially)

complete.
THEOREM 4.1. CAP is a topological construct.
PROOF. In order to show that CAP is initially complete consider the source
5

x > (X005
where all items have their obvious meaning.
Let A be defined by

A2 F(X) — R,

3 —> sup A,(stack f

P j j(:‘})) o fj'

To show that A is a CAP-limit on X is quite simple. (CAL1) and (CAL2) are trivial and
(CAL3) follows from the observation that for any j € J and any 3, § € F(X), we have
stack fj(3n$) = stack fj(3) nf£.(9).

To show that A is initial, let (X',A') € |CAP| and let g : X' » X be a function such
that for all j € J : fj o g is a contraction. Then for any 3 € F(X') we have

A(stack g(3)) o g

= sup Aj(stack fj(stack g(3))) o fj og

jeJ
= sup Aj(stack fjog(3)) ) (fjog)
jeJ
s A(3).
Consequently g too is a contraction and we are done. L

Before proceeding we now need some further notational conventions and definitions.
If X,Y € |CAP| then HOM,, .(X,Y) stands for the set of all morphisms i.e. contrac-
tions from X to Y. If no confusion can occur concerning the category under study we
often omit the subscript and simply write HOM(X,Y).
Given ¥ € F(HOM(X,Y)) and & € F(X) we define

¥ (F) := (W(F)|ye¥, FeF}
where for all y e Yand Fe 3 ;
¥(F) := {g(y)|g € v, y € F}.

Clearly, stack ¥(F) € F(Y).

Next for any f € HOM(X,Y) if Ay and Ay are the CAP-limits on X and Y respectively, we
define.

AV f) = {a eﬁ+|v F e F(X) : Ay(stack ¥(3F)) of sA(F) Vv a}.
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Quite obviously, L(¥,f) is a subinterval ofﬁﬁ+ and » € L(Y,f). Consequently the map

A @ F(HOM(X,Y)) —> ﬁgou(x,y)

Yy ———> inf L(Y,-)
is well-defined.
PROPOSITION 4.2. X is a CAP-limit on HOM(X,Y).

PROOF. We leave the details to the reader. (CAL1) follows from the fact that for any
f € HOM(X,Y) and any F € F(X) : stack((stack f)F) = stack f(F). (CAL2) and (CAL3)
follow from the facts that for any f € HOM(X,Y) and any ¥,$ € F (HOM(X,Y)) respectively,
if ¥ © ¢ then L(Y¥,f) c L(%,f) and if ¥ and ¢ are arbitrary then L(¥nd,f) =

L(Y,f) n L(&,f). .

If G is a topological construct, then & is called cartesian closed if for all
objects A,B € |G|, the set HOM > (A,B) can be endowed with a G -structure such that the
evaluation map

ev : AXHOMG(A,B)*B

defined by ev(a,f) := f(a) is co-universal with respect to the endofunctor A x -. For
more information on cartesian closedness, we refer to [7], [9], [20], [21].

THEOREM 4.2. CAP is cartesian closed.

PROOF. The assertion we have to prove breaks up in two parts :
(1) For any two objects (X,Ax) and (Y,AY) in CAP and A as defined in Proposition 4.2,

the evaluation
ev : (X,AX) x (HOM(X,Y),A) —> (X,AY)

is a contraction.
(2) For any three objects (X,Ax), (Y,AY) and (Z,AZ) in CAP and a contraction

f: (sz,)\xxxz) —_> (Y,AY)

the transpose
%
£ 1 (Z,1;) —>(HOM(X,Y), 1)

*
defined by f (z)(x) := f(x,z) is a contraction.
In order to verify (1) let (5 € F(XxHOM(X,Y)) and put F := prl((')') and ¥ := prz((’i)

where

pr
1 X
X x HOM(X,Y)/

HOM(X,Y)
pPT,
are the canonical projections.

Now fix (x,f) € X x HOM(X,Y) then from the definition of A and the construction of ini-

tial structures in CAP, it follows that
O N (G)(x, ) = A (F)(x) vV M)
= inf(\(F)(x) v a|a € L(Y,f)}. (4.1)

From the definition of L(¥,f) it follows that for any a € L(Y¥,f) :

Ay(stack v(F))(£(x)) s )\X(3’)(x) vV oa. (4.2)
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From (4.1), (4.2) and the fact that ev(F x¥) = ¥(F) it follows that

Ay(stack ev(&))(£(x))
s Ay(stack ev(F x¥))(£(x))
= Ay(stack ¥(3F))(£(x))
$ A (F)(x) v A)()
Qg (G (x,£).

This proves (1).
In order to verify (2) notice that for any G € F(Z), 3 € F(X), z € Z and x € X,
since f € HOM(XxZ,Y), we have
Ag(stack £(G)(F)N(£ (2)(x)
/\Y(stack fF(FxG))(£(x,2))
() v AZ(G)(Z).

LY

Consequently AZ(Q)(Z) e L(f*(g),f*(z)) which implies that
ME (G () 5 1,(6)(2).

%
The arbitrariness of & and z shows that f 1is indeed again a contraction. This ends
the proof of the theorem. L
A topological construct is called hereditary provided final epi-sinks are heredit-

ary, or equivalently as was shown in [11], if partial morphisms are representable.

If G is a construct and A,B € |G| then a partial morphism from A to B is a morphism

f e HOMG (C,B) where C is a subobject of A.

If G has subobjects then partial morphisms are representable if every object B € |G|

can be embedded via the addition of a single point “p into an object B:'F € |G| such

that for every partial morphism f : C - B from A to B the map

& .4 — 8t
at—> f(a) if aecC
=5 ifadcC
is a morphism in G . We shall use this characterization to prove our next result.

THEOREM 4.3. CAP is hereditary.

PROOF. Let (X,)\X),(Y,A) € |CAP| and let Z ¢ X. The subobject determined by Z we shall
denote (Z,)\Z) where then for any F € F(2Z) :

)\Z(3) = XX(stackX F).

Let £ i (Z,4,) » (Y,A) be a partial morphism from (X,A.) to (Y,A). Let ¥ = yu {2y}
where «, ¢ Y and define
"

Y
+

#

3 oFrehH - R

as follows. If JF e F(Y*)\{stackY* °°Y} then
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A(F ) ifyey
(I (y) = { Y

ify=eoY
and

* L =
A (stackY* Y) 0.

It is rather dreary but straightforward to verify that (Y#,A#) € |CAP| and that (Y,))
is embedded in (Y#,A*) by inclusion, so we omit this. Now we define

@ — otah

by f#(x) = f(x) if x € Z and f’(x) =y if x € X\Z.

To show that f# is a contraction, let 3 € F(X) and x € X. If F has a trace on Z
then it is clear that stack ¢ £¥(#) has a trace on Y equal to stack, f(E}IZ). If then
x € Z it follows that f#(x) = f(x) € Y and by definition of A# and the fact that

f € HOM(Z,Y) we then obtain

x*(stackY, #(3)et))

= A(st:ac:kY f(3‘|z))(f(x))

s AZ(3|Z)(x)

= Ay(stack (F[,))(x)

s () ().
If x € X\Z the same inequality results at once from the definition of ¥ and from
f#(x) = oy If F does not have a trace on Z then again the same inequality holds for

any x € X by definition of A# and the fact that stackY* f#(E?) = stack Y# oy By Theo-
rem 1 [11] this proves the theorem. L]

Since by definition a quasitopos is a hereditary cartesian closed topological con-

struct [10] our main result now is an immediate consequence of the foregoing theorems.
THEOREM 4.4. CAP is a quasitopos. L]
5. THE HEREDITARY TOPOLOGICAL CONSTRUCT PRAP

DEFINITION 5.1. Given X € |SET| a map
A F(X) — izf
is called a pre-approach limit (or PRAP-1limit for short), if it fulfils (CAL1), (CAL2)
and (PRAL). The pair (X,)A) is then called a pre-approach space (or PRAP-space for
short).
Clearly each pre-approach space is a convergence-approach space. The full subcate-
gory of CAP with objects all pre-approach spaces shall be denoted PRAP. From Proposi-

tion 4.1 we at once obtain the next result.
PROPOSITION 5.1. PRAP is a construct. L]

In Theorems 3.1 and 3.2, we proved that giving a distance on a set X is equivalent
to giving an approach limit on X. A simple inspection of the proofs of these two theo-
rems reveals that (D1), (D2) and (D3) are equivalent to (CAL1), (CAL2) and (PRAL). Con-

sequently, if we call a map
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fulfilling (D1), (D2) and (D3) a pre-distance, then without further proof we can state

the following two results.

THEOREM 5.1. If X e |SET] and 8§ is a pre-distance on X, then the map

A F(X) —> iﬁf

F — sup sup (SU
UeU(F) veU
is a pre-approach limit on X.
Moreover, for any x € X and A ¢ X :
8§(x,A) = inf A(W)(x). s

AL €U(stack A)

THEOREM 5.2. If (X,\) € |PRAP| then the map
X —
§ : X x 2 >]R+

(x,A) —> inf AW (x)
QUeU(stack A)

is a pre-distance on X.

Moreover, for any F € F(X) :

MF) = sup sup 8.
WeUu(d) ve

As was the case for approach spaces, the structure on a pre-approach space shall be de-
termined either by a pre-approach limit or by a pre-distance, whichever is more conve-

nient.
THEOREM 5.3. PRAP is a bireflective subcategory of CAP.

PROOF. Since PRAP contains all indiscrete CAP-objects, it will suffice to show that
PRAP is initially closed in CAP. Let (xj,xj)jEJ be a collection of PRAP-spaces and con-

sider the source
f.
x —— (X.,Aj))jEJ.
Let A be the initial CAP-limit on X given by Theorem 4.1. To prove that A fulfils
(PRAL), let (3k)keK be a collection of filters on X then

An 3 ) =sup A (stack £,( n F)) o £,
kek ¥ ey Pk K j
= sup A,( N stack £,(F )) o £,
jed 3 kex 3K ]
= sup sup A,(stack f,(F )) o £,

= sup A( gk)

kekK
and we are done. =

REMARK. It is easily verified that the PRAP-reflection of a CAP-space (X,A) is given

by

idX

(X, 1) > (X,AP)
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where the pre-distance associated with A_ is given by

P

§(x,A) := inf AU (x).
UeU(stack A)

COROLLARY 5.1. PRAP is a topological construct. .

We shall later give a simple reason why PRAP is not cartesian closed, it is how-

ever hereditary as we shall now prove.
THEOREM 5.4. PRAP is an hereditary topological construct.

PROOF. The proof goes exactly the same as that of Theorem 4.3., the only difference
being that now one starts with (X,AX),(Y,A) € |PRAP| and one has to show that
aF b e |PRAP|. We leave this to the reader. .

6. EMBEDDING CONV IN CAP

A convergence space [6], [15] is a pair (X,q) where X € |SET| and q ¢ F(X) x X
fulfils
(Cl) for all x € X : (stack x,x) € q.
(C2) ForallF,G e F(X) and x e X : (F,x) eq, Fc 8 =>(G,x) «q.
(C3) Forall F,9 e F(X) and x € X : (F,x) € q and (9,x) € q => (Fng,x) € q.

Given convergence spaces (X,q), (X',q') a function f : X » X' is called continuous
if for all (F,x) € q we have (stack £f(F),f(x)) € q"'.

The class with objects all convergence spaces and morphisms all continuous maps,

is a quasitopos [10], denoted CONV.
The proof of the following result is quite straightforward and so we omit it.

THEOREM 6.1. CONV is embedded as a full subcategory in CAP by the functor

CONV —> CAP
(X,q) = (X,Aq)

where for all 3 € F(X), and x € X :

0 if (F,x) € q
Aq(3)(X) = {

o otherwise. n

We shall now show that this embedding actually is extremely nice, but first we
mention the following useful characterization of CONV in CAP, similar to that of TOP in
AP [17].

PROPOSITION 6.1. A space (X,\) € ICAPI is a convergence space, if and only if for all
FeFE : MF)X) c {0,}. .

As the formulation of this proposition suggests we shall not differentiate between
the notion of a convergence space and of a CAP-space fulfilling the condition of Propo-

sition 6.1. This is after all entirely justified by Theorem 6.1.
THEOREM 6.2. CONV is a bireflective subcategory of CAP.

PROOF. Given (X,A) € |CAP| define

e P FX) R
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by A (F)(x) = 0 if AM(F)(x) < » and A (F)(x) = = if AMI)N(x) = = (X,},) clearly is

a convergence space and the bireflection of (X,\) is given by

id
(X2) —&—> (X,0,).

THEOREM 6.3. CONV is a bicoreflective subcategory of CAP.
PROOF. Given (X,A) € |CAP| define

N FEW —>1th
by A (F)(x) = 0 if A(F)(x) = 0 and A (F)(x) = » if A(F)(x) > 0. Again it is clear

*
that (X,A ) is a convergence space and that the bicoreflection of (X,A) is given by

idx

(X,A*) > (X,0).

7. EMBEDDING PRETOP IN PRAP

A pre-topological space [4], [6] is a convergence space (X,q) where instead of

(C3) q fulfils the stronger condition :

(PR) For any collection (F,,x). . < q we have ( n 'F ,,x) € q.

e jeg 3
The full subcategory of CONV with objects all pre-topological spaces is denoted PRETOP.
It is quite easy to see that precisely the same results hold for PRETOP w.r.t. PRAP, as

those proven in Section 6 for CONV w.r.t. CAP. We therefore list them without further
explanation.

THEOREM 7.1. PRETOP is embedded as a full subcategory in PRAP by the functor

PRETOP —> PRAP
X,q) > (X,Aq)

where for all 3 € F(X) and x € X :

0 if (F,x) € q
WETCIRE { )

otherwise. .

PROPOSITION 7.1. A space (X,)A) € IPRAPI is a pre-topological space, if and only if for
all F € F(X) : AM(F)(X) c {0,=}, or equivalently, if & is the pre-distance associated

with A, if and only if §(Xx2X) ¢ {0,=}. .
THEOREM 7.2. PRETOP is a bireflective subcategory of PRAP, the bireflection of any
PRAP-space being the same as its CONV-bireflection.

THEOREM 7.3. PRETOP is a bicoreflective subcategory of PRAP, the bicoreflection of any
PRAP-space being the same as its CONV-bicoreflection. L}
Again, we shall not differentiate between pre-topological spaces and PRAP-spaces

fulfilling the condition of Proposition 7.1.



432 E. LOWEN and R. LOWEN

8. EMBEDDING AP IN PRAP

From Section 3 it is quite clear that AP is embedded as a full subcategory of
PRAP.

THEOREM 8.1. AP is a bireflective subcategory of CAP.

PROOF. Since AP contains all indiscrete CAP-objects, it will suffice to show that AP

is initially closed in CAP. Let (Xj,)\j)jEJ be a family of AP-spaces and consider the
source

f.
S S—
(x > (Xj’Aj))jeJ'

Let X be the initial CAP-limit on X. From Theorem 5.3 we already know that A fulfils

(PRAL). To show that it also fulfils (AL), let F e F(X), let (S ey

tion of filters on X an put € := sup A(S(y))(y). Now, for all j € J define the fol-
€X

lowing selection of filters on ij:

be a selec-

n stack fj(S(y)) if z € fj(X)
yet 1 (2)
R .(2) :={ J
J stack z if z ¢ fJ.(X)

We leave to the reader the straightforward verification that for all j € J :

(D(@j,stack fj(3)) c stack fJ.(O(S,E?‘)). (6.1)
Next for all j € J, put e, := sup A, (®R.(z))(z). Now if z ¢ £ (X) then
zEXj J J

)\j(Qj(z))(z) = Aj(stack z)(z) =0 < €

whereas, if z € fJ.(X) then

Xj(ﬁlj(z))(z) Aj( n stack fj(€5(y)))(z)

yEf;I(z)
=  sup A, (stack £.(S(y)))(£f.(y))
RO i j
y€fj (2)

< sup sup A,(stack f.(S(y)))(£.(y))
ex 3 j 3

= €.

By the arbitrariness of j € J, this implies that
sup €, S €. (6.2)
jed

From (6.1) and (6.2) we then obtain

AMO(S,F)) = sup A,(stack fj(0($,3‘))) o fj

jeJ
< (@Q(R . ,stack £,(F))) o £,
<j‘€1§ )\J( ( Jsac J( ) j
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< sup X, (stack f (3F)) o fj + sup €,
jedJ jeJ
SA(3F) + e
and we are done. L
COROLLARY 8.1. AP is a bireflective subcategory of PRAP. L

9. EMBEDDING pqs-MET  IN PRAP

The most general kind of map measuring a distance between points of a set X is an

extended pseudo quasi-semimetric (shortly =-pgs-metric). An «-pgs-metric

d: X xX +IR+

need only fulfil d(x,x) = 0 for all x € X. The pair (X,d) then is called an «~-pgs-
metric space. Given »-pgs-metric spaces (X,d) and (X',d') a function f : X > X' is
called non-expansive if d' o (fxf) <4

Let Q_qs-METeo stand for the category with objects all =-pgs-metric spaces and morphisms

all non-expansive maps.

THEOREM 9.1. pqs-METm is embedded as a full subcategory in PRAP by the functor

pgs-MET~ —> CAP
(X,d) —> (X,Xd)

where for all F € F(X) and x € X :

A (3’)(x) := inf sup d(x,y).
FeF yeF

PROOF. That Ad fulfils (CAL1) and (CAL2) is clear. That it also fulfils (PRAL) is
seen as follows. Let (E"j)jEJ c F(X) then for any x € X we have

A ( n 3 )(x) inf sup d(x,y)
jEJ Fe n 3- yeF
jed
= inf sup d(x,y)
be M 3j ye U 8(j)
jeJ jeJ

= inf sup sup d(x,y)
be N F, jeJ yeo(j)
jes !
= sup A (3 )(x).
jeJ
00
If (X,d), (X',d') € |pqs-MET | and £ : (X,d) > (X',d') is non-expansive it is easily
verified that f : (X,Ad) > (X',Ad.) is a contraction. The converse is equally simple
upon noticing that from the definition of Ad’ for any x,y € X : d(x,y) = Ad(stack y)(x).
| ]
REMARK. By Theorems 5.1 and 5.2, the pre- approach space (X, A4 ) is identical to (X,$ )

where 6 is the pre-distance derived from Xd’ i.e. for all x € X and A c X :

§ .(x,A) = inf £ d
q(x inf sup d(x,y). 9.1
UeU(stack A) Ue U yeU -0
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This rather complicated expression for 6d can however be much simplified using the fol-

lowing lemma.

LEMMA 9.1. Given (X,d) € |pqs-MET" |, W e U(X) and x € X we have

sup inf d(x,y) = inf sup d(x,y).

Ve W yey Ue W yeU
PROOF. The inequality s follows from the fact that for any Ul’UZ e WU :
inf d(x,y) s sup d(x,y). To show the other one, suppose
yeU, yeU,

inf sup d(x,y) > a 2 0.
Ue W yeU

Then for all Ue€U there exists yyeU: d(x,yU) > a. Clearly

Wis {y|UeU} e

and inf d(x,y) 2 o which proves our claim. L]
yeW

THEOREM 9.2. Given (X,d) € |pqs-METm| the pre-distance Gd associated with 1, is given
by

Gd(x,A) = inf d(x,a) x € X, A cX.
a€A
PROOF. Immediate from (9.1) and Lemma 9.1. ]

THEOREM 9.3. pqs-MET°° is a bicoreflective subcategory of PRAP.

PROOF. Let (X,8) € |PRAP| and define the map

d, : X x X — ﬁiﬁ

(x,y) > 8(x,{y}).

8

It is clear that (X,dé) € ‘pqs—METw|. The remainder of the proof now is exactly the
same as in Theorem 6.7 [17], where it was shown that pq-MET°° is a bicoreflective subca-

tegory of AP, and so we omit this. L]

Analogous to the characterization of pq-METQ in AP [17], we have the next result,

the verification of which we leave to the reader.

PROPOSITION 9.1. A space (X,8) € |PRAP| is an =-pgs-metric space, if and only if for
any x € X and A c X :

§(x,A) = inf 6(x,{a}). .
a€hA

THEOREM 9.4. pqs-MET°° is a hereditary topological construct.

PROOF. This is an immediate consequence of Corollary 5.1, Theorem 9.3 and of Theorem 6
[11]. ]

REMARK. Initial structures in pqs-MET°° are obtained as follows. Let
b
(x > (X45d00) 5

be a source, then the initial ~-pgs-metric on X is given by



QUASITOPOS CONTAINING CONV AND MET AS FULL SUBCATEGORIES 435

d t= sup d, o (f xf
o 30

We leave the verification to the teader.

).

THEOREM 9.5. pqs-MET is cartesian closed.
PROOF. For (X,dx), (Y’dY) e [pqs-METw| let HOM(X,Y) stand for all non-expansive maps
from (X,dx) to (Y,dY). For any f,g & HOM(X,Y) put

c(f,g) t= {a eTf!+|dYo(fXg) s dyVva)
and define

d : HOM(X,Y) x HOM(X,Y) —> R,
(f,g) ————smwm=> inf C(f,g)

Clearly d is a well-defined »-pgs-metric on HOM(X,Y). In order to show that

ev ¢ (X,dx) x (HOM(X,Y),d) =—> (Y,dy)

(x,f) bF——————> f(x)
is non-expansive, let x,y € X and f,g € HOM(X,Y) then

dY(f(x),g(y)) < inf{dx(x,y) Vala € C(f,g)}
= dx(x.y) \ d(fyg)

= dX x d((x,y),(£,8)).

Next, if (Z,d,) € |pgs-MET |, f e HOM(XxZ,Y) then consider the map
*
£f (Z,dz) ~-> (HOM(X,Y),d)
®
g => f (2)
% *
where f (z) is defined by f (2)(x) 1= £(x,2).
*
In order to show f is non-expansive, let 2z,z' € Z then since f € HOM(XxZ,Y) we obtain
for all x,x' € X :
* %
dy o (£ (2)xf (2'))(x,x")
= dY(f(xoz)of(x'nz'))
I3 dx(x,x') v dz(z.z').

% % * *
Consequently dZ(z,z‘) e C(f (z),f (2')) and d(f (z),f (z')) = dZ(z,z'). ]
The combined results of Theorem 9.4 and 9.5 now give us the following theorem.
THEOREM 9.6. pqs-MET°° is a quasitopos. L}

As a final result in this section, we shall now show that pq-MET°° (which is a bi-
coreflective subcategory of AP [17]) is a bireflective subcategory of pqs-METm.

THEOREM 9.7. pq-P’[ETO° is a bireflective subcategotry of pqs-METw.
PROOF. Given (X,d) € |pqs-MET | define
d: X xX +]R+

as follows. For any x,y € X, put
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n n
S, (x,y) &= {(xj)j=0 e X |x0 =% x =y}
and then define
i(x,y) T od( ) (x )R (xy)
d(x,y) = inf inf{ I d(x,_,,x x.)._~ €S (x,y)}.
’ ne]No =1 3-1°73 j’j=0 n

Verification of the facts that d satisfies the triangle inequality and that

idX

(X,d) > (X,d)

is the pq-MET -reflection of (X,d), we leave to the reader. L]

10. COUNTEREXAMPLES

COUNTEREXAMPLE 1. We construct a finitely generated topological space, a CONV-quotient
of which is not in PRETOP. Let X :t= U Jn,n+l[. Consider the partition of X by split-
ting each interval ]n,n+1[ in three sgbintervals ]n,n+%[, [n+%,n+1-%], ]n+1—%,n+1[ and
let “Z be the associated partition topology on X. Since X is then a co-product of in-

discrete spaces it is finitely generated [9]. Let Y := ]0,1[ and consider the map
f:X— Y
x —> x-[x].

The CONV-quotient q on Y is characterized by stating that (F,y) € q, if and only if
there exist X seeerX € f-l(y) such that

n
n f(Wi(x,)) c F
N (x;)
where for any x € X : A (x) is the “b -neighborhoodfilter of x. Consequently for all

ns3:

(f(dl‘(n%)).%) eq

but (n W), ¢ a
n23

and thus q is not pre-topological. .
COUNTEREXAMPLE 2. We construct a finite =-pg-metric space, the w-pq-metric of which

attains only the values 0 and ~ and a pqs-METm-quotient of which is not in pq-MET .
Let X := {u,v,x,y} and let d be the =-pg-metric (i.e. d is symmetric) defined by

d(u,y) = d(v,x) =0
d(u,V) = d(v,y) = d(y»x) = d(x’u) = .

Let Y := {u,v,z} and define the map
f:X->Y
by f(u) = u, £(v) = v, £(x) = £f(y) = z.

If e denotes the pgs -METw-quotient on Y then the e-distance between two points in Y

is equal to the d-distance between their fibres. Consequently

d(v,x) A d(v,y) =0
d(u,x) A d(u,y) =0

d({v}, {x,y})
d({u},{x,y})

e(v,z)

n
"

e(u,z)
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but since
e(u,v) = d({u},{v}) = d(u,v) = =

e does not fulfil the triangle inequality and thus is not an =-pq-metric. L

From [17] and the foregoing sections we obtain the following diagram where r (resp.

c) means the smaller category is bireflective (resp. bicoreflective) in the larger one.

cony ——E— cAP

r
r

T
PRETOP /c// PRAP \c pqs-METm

T

r r

T o
TP — AP T pq-MET

We shall now use the results of both counterexamples to show that this diagram is com-
plete in the sense that no other reflectivity or coreflectivity arises except those in-

dicated and those obtained by transitivity.

In [17] it was shown that TOP N pq-METun consists precisely of all finitely gene-
rated spaces and that a distance attains at most the value 0 and =, if and only if it is
associated with a topology. Consequently in both counterexamples the original space X

is at the same time in TOP, in pq-METm and a fortiori also in AP.

The first counterexample then shows that Y, the CONV-quotient (= CAP-quotient) of X,
is not in PRETOP and since CONV N PRAP = PRETOP (see Proposition 6.1 and 7.1) also not
in PRAP. This gives us first the known results that neither TOP nor PRETOP are core-
flective in CONV, second that neither AP nor PRAP are coreflective in CAP and third that
neither pq~MET°° nor pqs-METm are coreflective in CAP.

The second counterexample gives us Y, the pqs-METw-quotient (= PRAP-quotient) of X,
which is not in pq-METm. However since the pre-distance on Y again attains only the
values 0 and », Y is in PRETOP. On the other hand, since pqs-METm n AP = pq-MET°° (see
Theorem 6.20 [17] and Proposition 9.1) Y is not in AP and thus also not in TOP. This
then gives us first again the known result that TOP is not coreflective in PRETOP, se-
cond that AP is not coreflective in PRAP and third that pq-MET°° is not coreflective in
pqs-METm. Further in [17] it was seen that pq-MET°° is not reflective in AP from which
it follows that pqs-METm is neither reflective in PRAP nor in CAP, and that pq-METm is

not reflective in CAP. This completes our argumentation.

The authors would like to thank J. ADAMEK and L.D. NEL for bringing the problem of

cartesian closedness in the setting of AP to their attention.
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