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ABSTRACT. The associated Legendre functions are defined using the Legendre numbers.
From these the associated Legendre polynomials are obtained and the derivatives of
these polynomials at x = 0 are derived by using properties of the Legendre numbers.
These derivatives are then used to expand the associated Legendre polynomials and <"
in series of Legendre polynomials. Other applications include evaluating certain in-
tegrals, expressing polynomianls as linear combinations of Legendre polynomials, and
expressing linear combinations of Legendre polynomials as polynomials. A connection

between Legendre and Pascal numbers is also given.
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1. INTRODUCTION.

The Legendre numbers were introduced and many of their elementary properties were
developed in [1]. We apply these properties to a variety of problems and the use of
Legendre numbers may provide somewhat simpler solutions to the problems.

2. DERIVATIVES OF ASSOCIATED LEGENDRE POLYNOMIALS AT x = O.
For n and s non-negative in;egers the associated Legendre functions are

defined as usual by

P = (- xz)s“nspn(x), 2.1)

s
where Pn(x) is a Legendre polynomial and p° = ELj; . Since Pn(x) can be expressed,

ax
i i i
see [1], by using the Legendre numbers, Pn’ (where Pn = Pn(x)]x=0)’ as

Pi i
P (x) = r)‘.ﬂx_ 2.2)
n L4 :

i=0

Equation (2.1) becomes
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)5/ 28 ’z'
i=0

It is clear that P:(x) is a polynomial of degree n for s even. Thus, let s = 2m

Pz(x) = (1 - (2.3)

and recall, see [1], that Ptj" =0 for n and i of different parity. Omitting these
null terms from (2.3), one has

n

2 P21x21
2 mDZm n
1-x") ):0 -———-(21)! , N even
P2%(x) = - @.4)
n “; p2itl 2i+1
a- 2 n 2m Z _n_____-x___ a odd
(2i+1)t -
Taking the indicated derivatives in (2.4) gives
n-2m
2
(1-x mizo_(—fﬁ!—’ n even
2m
PP(x) = (2.5)
n “‘2“‘ 1 pIm2iH] 2141
o 1
(l-x) iZO———(—Z:‘_—.’_l)—!"‘,I‘lm:l(‘l.
k. 2m

'o obtain D P (x), Leibniz' Theorem is used. For 0 < k < n, one has from
(2.5)

n-2m

k T 5 2m+21 21
k] k-1 12 By
) D )mD z ————| , n even
1=0 -[i 120 (24i)!
k_2m
D P (x) n-2m-1 (2.6)
- —— 2m+2i+l 2i+]
I)? [k]Dk-i(l xz)mD:1 f: ———-——-Pn n odd
- , .
1=0 |! i i=0 (2i+1)!
From this equation one sees that for n even, k 2m (x)j =0 for k odd, since

in each term the first factor is 0 for 1 even and the second is 0 for i odd.

k
For n odd, D sz(x) ]x=0 =0 for k even, since in each term the first factor is 0
for 1 odd and the second is 0 for i even.

One observes that for n even,

o-Zn 0, i odd
P Y. ={0, i>n-2n (2.7)

i=0 (21! x=0 inﬂ-i

= P , 1 even, i <n - 2m,
n =
and for n odd,
n-Zwol p2mH2IHL 2141 0, 1 even

i n
D 120 i)l o 0, i >n - 2m (2.8)

PIZIm-H., i odd, i <n - 2m

Further,
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" 0, k- i odd

D_(l-x)]x=0= 0, k -1i>2m 2.9)

m
Dk-i ) (-l)j(?)xzj]xso, k - i even, k - 1 < 2m.
3=0

The derivative on the right in (2.9) can be expressed using factorial notation as

m . s |
I onI@en® Akl w -4 even, k - 1 < 2m,
i x=0
=3
which reduces to the first term
k-1 N
2 m _ k-1
(-1) k_iJ(k -1i)! , k- 1i even, 2 <m,
2

for x = 0. Now (2.9) can be expressed as
0, k -1 odd

Il =90, k-1i>2m (2.10)

ki 2
x=0 k-1

D a -

2

(-1)2 [kTiJ(k - 1i)!, k - i even, L2 < m.
2

Using Equations (2.7), (2.8), and (2.10) in (2.5) and the observations following
(2.6), one sees that
0, n even, k odd

Dszm(x)] = 0, n odd, k even (2.11)
n x=0 k-i

K (1) 2 wimp?mH

n

, n and k of the same parity,

k-1 k-i
20 it (== 1.
i=0 11 GG @m-5)!
where a term in the series above is 0 if k - i 1is odd or if m < 5%1 . Also,
recall that Pim+i =0 for 1 >n~-2m, for i odd and n even, and for i even

and n odd.

Equation (2.11) provides a formula for evaluating DkPim(x)]x=o. Of course, the
answers obtained by (2.11) agree with those obtained by other methods -- and can be
easily verified for small integers k, m, and n.

3. ASSOCIATED LEGENDRE POLYNOMIALS AND x" AS SERIES OF LEGENDRE POLYNOMIALS.

1t is known that an associated Legendre polynomial can be expressed as a series of
Legendre polynomials. Equation (2.11) and a table of Legendre numbers, see Table 1,
can be used to provide a formula for the coefficients in the series. To outline the

method, let
2m o
Pn (x) = iZoAiPi(x). (3.1)

Take n derivatives to obtain n other identities,

k_2m Tod
DP(x) = JADP (x), k=1, 2, 3,...,n.
n ¢ i
i=0
In these n + 1 identities let x = 0. Use (2.11) on the left sides of the resulting

n + 1 identities and recall that DkPi(x)]x=0 = PE, see [1]. The right sides can be
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simplified by using PE =0 for k >i. The systemof n + 1 identities in n + 1
unknowns can be solved for the Ai's and (3.1) gives the desired expansion. The
L]
values of the Ai s can be obtained in the order An, An-l’ An_z,...,Ao, by
p Danm(x)]
An = n
P
n
T -i_2m T n-1i
PR - 1 AP
< - k=n-i+1l
Ay -y »,1<i<n (3.2)
n-i
i
31
n-i_2m n—i
L DR g - LA eaPaoseak
= k=1 1<iz<n
n-i ’ -
n-i
. i-1
where [5] =5 for i even and =5 for 1 odd.
m .
Pafp =20 pl p? p3 p* P #° p’ ...
n n n n n n n n n n n
0 1
1 0 1
1
2 -3 0 3
3
3 0 -3 0 15
3 15
4 s 0 2 0 105
15 105
5 0 3 0 -= 0 945
15 105 _945
6 -%8 0 e 0 - 0 10,395
7| 0 I ms o105 o gy
105 _945 10,395 135,135 .,
8 384 0 48 0 -—J———e 0 —’——-—2 0 2,027,025
TABLE 1. LEGENDRE NUMBERS P:
Now, x* can be expanded in a series of Legendre polynomials in a similar way.
Let

and proceed as

as

i(x)’

)

H AP
i=0 1
in the derivation of (3.2) to obtain in order A N A 1,

n!

Ayt —:;— ’

n

0, i=n - k k odd
Ai =

i=n-k, k even.

2
Z i+2j i+23

e HIH

(3.3)

greee A,
>

(3.4)



SOME APPLICATIONS OF LEGENDRE NUMBERS 409

With these values of the Ai's (3.3) gives the desired expansion, which agrees with the

known expansion

3] 2netit )P . ()
n-2k (3.5)

3 .
k=0 kUG

n _ n!
X = —

(e}

N

4. SOME INTEGRALS INVOLVING LEGENDRE NUMBERS.
In [1], the result

1 P
n+l
IOPR(X)dx == (4.1)

for n any positive integer is given. Here, two other important integrals are ex-
pressed in terms of Legendre numbers. It is known, see [2], that if m = n, then
l \
S
JOPn(x)Pm(x)dx = Intl - (4.2)

More generally, if m and n are different non-negative integers, Rainville,

[2], gives the result

b b
- = (1-x2)[P' _ '
(n m)(n+m+1)JaPn(x)Pm(x)dx (1-x )[Pm(x)Pn(x) Pm(x)Pn(x)]]a . (4.3)
m dm(Pn(x)) n 1
With a =0, b =1, and the results P = -———— , P, =P =0 for m and n
n dx %=0 1 m
even and Pn = Pm =0 for m and n odd from [1], Equation (4.3) becomes

1 1 1
Jol’n“)*‘m(x) " Gon) @hatD)
O, m and n of the same parity
= 1
PmPn
(m - n) ((mntl)

(4.4)

,m and n of different parity.

A third integral can be evaluated as shown by the following computation. With

n>1,

&0
n n-2k’
x n-ek

o] wo ™
jl n-2k P _ xT

X
) _11:_2:!_)4,{

1|  n-2k P"
J dx (Ly 2.2)

1
Joann_Zk(x)dx =

0 m=0
m m+n
n-2k Il Pn_ka

0 al dx

m=0 1
m mn+1l
n—zk Pn_ka

=0 m! (mrn+l) 0

m
_ n-2k Pn-2k
mo o (mrn+l)

Therefore, m
n-2k Pn~2k

ol (wn+l) ° (4.5)

1

n

xP . (x)dx =
JO n-2k =0

Since the value of this integral is known one can use this value for the series.
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Thus,
m

n-2k Pn-Zk - n! (6.6)
m! (mn+l) °“-k!(3) .
< 2’n-k

m=0

5. POLYNOMIALS AS LINEAR COMBINATIONS OF LEGENDRE POLYNOMIALS.

Since the Legendre polynomials form a simple set, any polynomial of a single vari-
able can be expressed as a finite series of Legendre polynomials. Using Table 2, this
can be done in much the same way any polynomial can be expressed in terms of factorials.
Consider the problem of expressing

H(x) = 5%° - 3x2 + 4x - 3
in terms of Legendre polynomials. By continued subtraction of Legendre polynomials we

obtain a zero remainder. Detaching coefficients,

H(x) =5 -3 4 -3
2P3(x) =5 -3
Diff. = -3 7 -3
—2P2(x) = -3 1
Diff. = 7 =4
7P1(x) =
Diff. = -4
-4Ry () = -4
Diff. = 0.
Thus
H(x) - 2P3(x) + 2P2(x) - 7P1(x) + hPo(x) =0,
from which
H(x) = 2P3(x) - 2P2(x) + 7Pl(x) - 4P0(x) . (5.1)
Q" 0 1 2 3 4 5 6 7 8
n Qn Qn Qn Qn Qn Qn Qn q, Qn
0 1
1 0 1
1 3
2 2 0 2
3 5
3 0 ) 0 2
3 _30 35
4 8 0 ) 0 3
15 70 63
5 0 8 0 78 0 3
5 105 _315 231
6 16 RT3 0 16 0 16
35 315 _693 429
7 LT3 ° s LT3 ° 16
8 35 o -1260 o 8930 012,012 6435
128 128 128 128 128
. o



SOME APPLICATIONS OF LEGENDRE NUMBERS 411

For a second method, set
5x0 - 3x% 4 bx - 3 = AP, (x) + BR,(x) + CP,(x) + DR ().

Take the first three derivatives with respect to x, let x = 0 in each of the four
identities, and use P:(O) = P: to obtain the system

-3 =

&

+ BP, + CP1 + DPO
1
1

4 =

&

+ BP, + CP
(5.2)

-6 =

&

+ BP

NNNNMN

30 =

WWwWWwihwEW

&

Next, use Table 1 and solve for A =2, B=-2, C=7, and D = -4 in the order
listed to obtain (5.1) again.
More generally, if V(x) is a polynomial of degree n in x, write

n
V(x) = J AP, (x), (5.3)
Lo M

take n derivatives, let x =0 in the n + 1 identities, and use Pim)(o) = P: to
‘obtain the Ai's in the order i =n to i =0 as

(n)
R A )
n P:
n (5.4)
vy - 3 Angi
A, = _Jen-i+l , i =n-1,n-2,...,1,0
i n-1i
P
n-i
Since P: = 0 for m+ n odd, the second equation of (5.4) can be expressed as
n-i
2
1) ,,..
Vo) jzlA“ZjPi*Zj
Ai = I , i = n-1, n-2,.,,,1,0 (5.5)
By

Table 2 can be used to evaluate a finite series of Legendre polynomials as a
polynomial in x. As an example, we evaluate
S(x) = P7(x) - 4P6(x) - 5P5(x).
Detaching coefficients,

35 315 693 429
P,x) =0 -3¢ C T3 TR 16
5 105 315 231
~4p () = 3 o 1B, 3 0 3
- 75 350 315
ey =0 -3 o B0 A
smo5 185 105 1015 315 _ 1323 _231 429
4 16 4 16 4 6 "4 16
Then,
oo =318, 1052 10153 354 13235 2136 4297
P Tl e v e s T A A

6. LEGENDRE AND PASCAL NUMBERS.
Consider Table 3, which gives values for L:. The entries shown are integers, a

result that can be easily proved. The alternate diagonals have entries of the form
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it
—?;:IT?— , 1=0 to n (6.1)
reading from upper right to lower left. If ZnPﬁln! is factored from
m
SNl onon o no
0 1
1 0 2
2 -2 0 6
3 0 -12 0 20
4 6 0 -60 0 70
5 0 60 0 -280 0 252
6 -20 0 420 0 -1260 0 924
7 0 -280 0 2520 0 -5544 0 3432
8 70 0 -2520 0 13,860 0 -24,024 o 12,870
: .« .. o
TABLE 3. L) = 27Q) = —=*

each entry on such a diagonal, the remaining factors are (—l)iC(n,i).

one has
2oHpe-l gy mpRea, 1)
ot L i=0 to n
(n-i)! n! ’ :
Equation (6.2) can be simplified to
D2ttt
Q= =C(n,i), i =0 to n,
(n—i)!Pn

which shows a connection between Legendre numbers and Pascal numbers.

be easily proved using the general form of the Legendre numbers, P:,

In notation,

(6.2)

(6.3)

This result can
given in [1].
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