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ABSTRACT. For a positive integer r, let r, denote the quotient of r by its largest

squarefree divisor (1, =1). Recently, K. R. Johnson proved that

(*) z |cd,r)| = r, ™ (atl) = (a(p-1l) +1) or o0
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according as r*|n or not where C(n,r) is the well known Ramanujan's sum. In this paper,
using a different method, we generalize (*) to a wide class of arithmetical functions
of 2 variables and deduce as special cases (*) and similar formulae for several genera-

lizations of Ramanujan's sum.
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1. INTRODUCTION.
For a positive integer r, let ryi denote the quotient of r when divided by its larg-
est square free divisor (1, = 1). Recently K. R. Johnson [1] proved that
: olc@,n] =r, T (atl) I (a(p-1)+l) or 0 1.1)
din 22 22
= Pl
pir plr

according as r*ln or not, where C(n,r) is the well known Ramanujan's sum and pa|[n

a+l 4 n. 1In his proof, since C(n,r) is not multiplicative in n,

means that paln and p
he used [1] two identities concerning C(n,r) that were proved by him in an earlier
paper [2]. As a matter of fact (1.1) can be obtained directly from the well known pro-
perty of the Ramanujan's sum, namely its multiplicativity in both variables n and r.
In section 2, using this method, we generalize (1.1) (see theorem) to a class of arith-
metical functions of two variables and in section 3, specializing our theorem, we deduce
as corollaries, formulae analoguus to (1.1) for several generalizations of the
Ramanujan's sum and (1.1) also.

We recall that an arithmetical function f(n,r) is said to be multiplicative in both

variables n and r if
(n, n,) = (rl’ r,) = (o, r,)) = (nz, r;) =1 implies (1.2)

f(nlnz, rlrz) = f(nl,rl) f (nz,rz)
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and that such a function is completely determined by its values f(pa,pb) for primes p
and non negative integers a and b.
2. MAIN THEOREM.

For given arithmetical functions g(n) and h(n) and for a given positive integer k,
let

s® @ =s®@n = a@ 1 h & (2.1)

g,h k K d d
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where u(n) is the well known Mobius function and (x,y)k stands for the greatest common
k th power divisor of x and y. It is immediate from lemma 2.1 of [3] that, if g(n) and
h(n) are multiplicative, then S(k)(n,r) is multiplicative in both variables n and r.
For a given pair n,r of positive integers we write n (resp t) to denote the
largest divisor of n (resp r) that is relatively prime to r (resp n). We write n for

and T for £ . We prove the following
r

=R -]

THEOREM. If g(n) is completely multiplicative and h(n) is multiplicative then
s @ ol =@ e | 1 (he)] + e la® - h@D
k & plr
d |n
or 0 according as ri | n or not, where Tk(n) is the number of positive k th power divis-
ors of n and the non negative integer ¢, = ck(p) is determined so that
ke n k(ck+1)
P % and p I X -
T, r,
We need the following lemmas.
LEMMA 1. For a prime p and non negative integers a and b we have

spa by -1 ifb=o0 (2.2)

g(pb) - g(pb-l)h(p) if a > bk >k

-g(pb’l)h(p) if 0 2 (b-1) k £ a < bk
0 if 0 £ a < (b-1)k
a bk. uk
PROOF. Let (p°, p )k =p so that 0 < u < b. From (2.1) we have
u -4 -
s = § o) W) ned) . (2.3)
j=0

If b =0 then u = 0 and the r.h.s. of (2.3) is 1 while if b > 1 one has
u=>b, u=>b-1or ug b-2 according as a 2 bk, (b-1)k £ a < bk or a < (b-1)k so that
the r.h.s. of (2.3) has the value as stated in (2.2).

REMARK. If g is completely multiplicative and a > bk 2 k we have

S(k)(Pa,pb) = eeN® o - h(p)).

LEMMA 2. For each integer i, 1 £ i < s, let ty be a non negative integer and for

each ordered pair (i,j), 1 £ i <s, 0 2 j < ts let aij be a complex number. Then

.o+t a + ... +a )
1 i0 il iti

ees a

L a a
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where the summation on the left is extended over all s-tuples (jl,jz,...j ) with
s
<. <
0 =< iy = ti'

The proof of this lemma consists of noting that each term on the left occurs
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exactly once in the expansion of the product on the right and vice versa.

b
PROOF OF THE THEOREM. Let n= T p> (a=a)andr= KT p (b=5b)
pln P plr P

be the canonical decompositions of n and r respectively.
Case (i) Suppose ri 1 n. In this case we have either a < k(b-1) for some

prime pl; or b > 1 for some prime pl%. Let dk|n and d = ? pa with 0 <o < [%] .
Pin

Then clearly rE + dk and hence we have either 0 X ak < (b-1)k for some p|r

() (gk

or b > 1 for some p]f. This implies that S ,r) = 0 for each k th power divisor

dk of n in virtue of lemma 1 and the multiplicativity of S(k)(n,r) in both variables n
and r.

Case (ii) Suppose rt | n. In this case a 2 k(b-1) for each p|T and b = 1 for each

o P k- k-
p|r. Let dk |n. Then d can be uniquely expressed as d d with d ]n , d |n and
(d, d) = 1. The multiplicativity of S(&)(n,r) in both variables implies

sk 1y = s® (gkik 71y 2.4)
=s®@k 5 s®@E, 1 s® @, b

u@® n@ @, o.

Hence we have

p 1 s®En] =@ | @ | 1 s®d, B (2.5)
d|n a&a
since, for a given k th power divisor xk of n, the number of k th power divisors dk of
n for which d = x is tk(ﬁ). Again in virtue of the multiplicativity of S(k)(n,r) in

both variables we have
s ke b,
- k i

I ’S(k)(dk,r)[ =z (n | stk (py 5Py b

k= i=1

d ln b a

- - i, - i, -
where Pys Py --- P are the prime divisors of n (hence of r), P ||r, 1 I]n and the
a
i

summation on the right is extended over all s-tuples (11,22,... QS) with 0 < li < [1:].

Now lemma 2 implies that

2k
| s ¢, P

z ls(k)(dk, r)| = T
<[a
2 < ]

a&|a P
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b-1

m_lge | (Ihe)| + ([F] - b+1) |g(p)-h(p) |}

plt

g )| 1_ (Ihe)| + ¢ | 8(p) - h(@)]
Plr

The conclusion in this case now follows in virtue of (2.5), on pushing [h(;)] into the
product (since p|r ::$>ck(p) =0).
3. TFORMULAE FOR RAMANUJAN'S SUM AND ITS GENERALIZATIONS.

Let f = £f(x) be a polynomial of positive degree with integer coefficients and, for

positive integral r, let Nf(r) denote the number of incongruent solutions (mod r) of
the congruence f(x) = O(mod r). Suppose such a polynomial f, a multiplicative arithme-

tical function n(n) and positive integers k and t are given. Then, by taking g(n) =nkt

and h(n) = n(n) N; (nk) (N;(r) = (Nf(r))t) in (2.1) we have the generalized Ramanujan's
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cum introduced by Chidambaraswamy [3], viz.,

k,n kt - . t l_k
Cf,t (n,r) = ¢ d U(E) n (E) N, (dT) . (3.1)

dk|(n,rkk

This function includes as special cases (see [3]) the Ramanujan's sum C(n,r) and
some of its generalizations. In fact, writing I(n) = 1 for all n and, for a given
positive integer u, uu(n) = exp (Ni m(n)u-l) or 0 according as n is or is not square-
free (w(n) being the number of distinct prime factors of n), we have C::%(n,r) =C(k%n;r)

1,1 k,1I (k)

(Cohen [4]), Cx,t(n,r) = Ct(n,r) (Cohen [5)), Cx t(n,r) =C, (n,r) (M. Sugunamma [6])

t

1,uu

u
and Cx 1 u (n,r) = C v (n,r) (C. S. Venkataraman and R. Sivaramakrishnan [7]).

Specializing the functions g(n) and h(n) suitably in our theorem we obtain, for

the functions described above, the following formulae:

k,n o kt ¢ ¢
I|c, (@, = n
10, @n0 ] = m e ® 1y 5] 4 e [P E-n NP |) (3.2)
X plr £ k £
d"|n
or 0 according as ri | n or not
u
Eole® @) =@ 1 @+ | p-exp (nmiuhH]) (3.3)
d|n plr
or 0 according as r*|n or not
k R
L ]CE ) (dk,r)l = rEt tk(n) n @+ ck(pkt-l)) or 0 (3.4)
d|n plr

k
according as r, ln or not

[

k k
kznlc( ) (@,

[ r*k tk(ﬁ) T Q + ck(pk—l)) or 0 according (3.5)
d

plr
as r*kln or not

d? ICt(d,r)l =rf 1) T a+ cl(pt—l)) or 0 according as r,|n or not (3.6)
n pir

r lc,r)| = r*t(ﬁ) n 1+ cl(p—l)) or 0 according as r*|n or not. (3.7)
d|n Plr

Clearly (3.7) is the same as (1.1).
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