

AN IDENTITY FOR A CLASS OF ARITHMETICAL FUNCTIONS OF TWO VARIABLES

J. CHIDAMBARASWAMY and P.V. KRISHNAIAH

Department of Mathematics
The University of Toledo
Toledo, Ohio 43606

(Received November 17, 1986)

ABSTRACT. For a positive integer r , let r_* denote the quotient of r by its largest squarefree divisor ($l_* = 1$). Recently, K. R. Johnson proved that

$$(*) \sum_{\substack{d|n \\ p^a \mid \mid \frac{n}{r_*} \\ p \nmid r}} |C(d, r)| = r_* \pi(a+1) \pi(a(p-1)+1) \text{ or } 0$$

according as $r_* \mid n$ or not where $C(n, r)$ is the well known Ramanujan's sum. In this paper, using a different method, we generalize (*) to a wide class of arithmetical functions of 2 variables and deduce as special cases (*) and similar formulae for several generalizations of Ramanujan's sum.

KEY WORDS AND PHRASES. Arithmetical functions of two variables and multiplicativity in both variables. Ramanujan's sum and its generalizations.

1980 AMS SUBJECT CLASSIFICATION CODE. 10A20.

1. INTRODUCTION.

For a positive integer r , let r_* denote the quotient of r when divided by its largest square free divisor ($l_* = 1$). Recently K. R. Johnson [1] proved that

$$\sum_{\substack{d|n \\ p^a \mid \mid \frac{n}{r_*} \\ p \nmid r}} |C(d, r)| = r_* \pi(a+1) \pi(a(p-1)+1) \text{ or } 0 \quad (1.1)$$

according as $r_* \mid n$ or not, where $C(n, r)$ is the well known Ramanujan's sum and $p^a \mid \mid n$ means that $p^a \mid n$ and $p^{a+1} \nmid n$. In his proof, since $C(n, r)$ is not multiplicative in n , he used [1] two identities concerning $C(n, r)$ that were proved by him in an earlier paper [2]. As a matter of fact (1.1) can be obtained directly from the well known property of the Ramanujan's sum, namely its multiplicativity in both variables n and r . In section 2, using this method, we generalize (1.1) (see theorem) to a class of arithmetical functions of two variables and in section 3, specializing our theorem, we deduce as corollaries, formulae analogous to (1.1) for several generalizations of the Ramanujan's sum and (1.1) also.

We recall that an arithmetical function $f(n, r)$ is said to be multiplicative in both variables n and r if

$$(n_1, n_2) = (r_1, r_2) = (n_1, r_2) = (n_2, r_1) = 1 \text{ implies} \quad (1.2)$$

$$f(n_1 n_2, r_1 r_2) = f(n_1, r_1) f(n_2, r_2)$$

and that such a function is completely determined by its values $f(p^a, p^b)$ for primes p and non negative integers a and b .

2. MAIN THEOREM.

For given arithmetical functions $g(n)$ and $h(n)$ and for a given positive integer k , let

$$s_{g,h}^{(k)}(n,r) = \sum_{d^k \mid (n,r^k)_k} g(d) \mu\left(\frac{r}{d}\right) h\left(\frac{r}{d}\right) \quad (2.1)$$

where $\mu(n)$ is the well known Möbius function and $(x,y)_k$ stands for the greatest common k th power divisor of x and y . It is immediate from lemma 2.1 of [3] that, if $g(n)$ and $h(n)$ are multiplicative, then $s_{g,h}^{(k)}(n,r)$ is multiplicative in both variables n and r .

For a given pair n,r of positive integers we write \hat{n} (resp \hat{r}) to denote the largest divisor of n (resp r) that is relatively prime to r (resp n). We write \bar{n} for $\frac{n}{\hat{n}}$ and \bar{r} for $\frac{r}{\hat{r}}$. We prove the following

THEOREM. If $g(n)$ is completely multiplicative and $h(n)$ is multiplicative then

$$\sum_{d^k \mid n} |s_{g,h}^{(k)}(d^k, r)| = \tau_k(\hat{n}) \mid g(r_*) \mid \prod_{p \mid r} (|h(p)| + c_k |g(p) - h(p)|)$$

or 0 according as $r_*^k \mid n$ or not, where $\tau_k(n)$ is the number of positive k th power divisors of n and the non negative integer $c_k = c_k(p)$ is determined so that

$$p^{kc_k} \mid \frac{n}{r_*^k} \text{ and } p^{k(c_k+1)} \nmid \frac{n}{r_*^k}.$$

We need the following lemmas.

LEMMA 1. For a prime p and non negative integers a and b we have

$$s^{(k)}(p^a, p^b) = \begin{cases} 1 & \text{if } b = 0 \\ g(p^b) - g(p^{b-1})h(p) & \text{if } a \geq bk \geq k \\ -g(p^{b-1})h(p) & \text{if } 0 \leq (b-1)k \leq a < bk \\ 0 & \text{if } 0 \leq a < (b-1)k \end{cases} \quad (2.2)$$

PROOF. Let $(p^a, p^{bk})_k = p^{uk}$ so that $0 \leq u \leq b$. From (2.1) we have

$$s^{(k)}(p^a, p^b) = \sum_{j=0}^u g(p^j) \mu(p^{b-j}) h(p^{b-j}). \quad (2.3)$$

If $b = 0$ then $u = 0$ and the r.h.s. of (2.3) is 1 while if $b \geq 1$ one has $u = b$, $u = b-1$ or $u \leq b-2$ according as $a \geq bk$, $(b-1)k \leq a < bk$ or $a < (b-1)k$ so that the r.h.s. of (2.3) has the value as stated in (2.2).

REMARK. If g is completely multiplicative and $a \geq bk \geq k$ we have

$$s^{(k)}(p^a, p^b) = (g(p))^{b-1} (g(p) - h(p)).$$

LEMMA 2. For each integer i , $1 \leq i \leq s$, let t_i be a non negative integer and for each ordered pair (i,j) , $1 \leq i \leq s$, $0 \leq j \leq t_i$, let a_{ij} be a complex number. Then

$$\sum_{s} a_{1j_1} a_{2j_2} \cdots a_{sj_s} = \prod_{i=1}^s (a_{i0} + a_{i1} + \cdots + a_{it_i})$$

where the summation on the left is extended over all s -tuples (j_1, j_2, \dots, j_s) with $0 \leq j_i \leq t_i$.

The proof of this lemma consists of noting that each term on the left occurs

exactly once in the expansion of the product on the right and vice versa.

PROOF OF THE THEOREM. Let $n = \prod_{p|n} p^a$ ($a = a_p$) and $r = \prod_{p|r} p^b$ ($b = b_p$)

be the canonical decompositions of n and r respectively.

Case (i) Suppose $r_*^k \nmid n$. In this case we have either $a < k(b-1)$ for some prime $p \mid \bar{r}$ or $b > 1$ for some prime $p \mid \hat{r}$. Let $d^k \mid n$ and $d = \prod_{p|n} p^\alpha$ with $0 \leq \alpha \leq [\frac{a}{k}]$.

Then clearly $r_*^k \nmid d^k$ and hence we have either $0 \leq ak < (b-1)k$ for some $p \mid \bar{r}$ or $b > 1$ for some $p \mid \hat{r}$. This implies that $S^{(k)}(d^k, r) = 0$ for each k th power divisor d^k of n in virtue of lemma 1 and the multiplicativity of $S^{(k)}(n, r)$ in both variables n and r .

Case (ii) Suppose $r_*^k \mid n$. In this case $a \geq k(b-1)$ for each $p \mid \bar{r}$ and $b = 1$ for each $p \mid \hat{r}$. Let $d^k \mid n$. Then d can be uniquely expressed as $\bar{d} \hat{d}$ with $\bar{d}^k \mid \bar{n}$, $\hat{d}^k \mid \hat{n}$ and $(\bar{d}, \hat{d}) = 1$. The multiplicativity of $S^{(k)}(n, r)$ in both variables implies

$$\begin{aligned} S^{(k)}(d^k, r) &= S^{(k)}(\bar{d}^k \hat{d}^k, \bar{r} \hat{r}) \\ &= S^{(k)}(\bar{d}^k, \bar{r}) S^{(k)}(\hat{d}^k, 1) S^{(k)}(1, \hat{r}) \\ &= \mu(\hat{r}) h(\hat{r}) S^{(k)}(\bar{d}^k, \bar{r}). \end{aligned} \tag{2.4}$$

Hence we have

$$\sum_{\substack{d^k \mid n \\ d^k \mid \bar{n}}} |S^{(k)}(d^k, r)| = \tau_k(\hat{n}) |h(\hat{r})| \sum_{\substack{d^k \mid \bar{n}}} |S^{(k)}(d^k, \bar{r})| \tag{2.5}$$

since, for a given k th power divisor x^k of \bar{n} , the number of k th power divisors d^k of n for which $\bar{d} = x$ is $\tau_k(\hat{n})$. Again in virtue of the multiplicativity of $S^{(k)}(n, r)$ in both variables we have

$$\sum_{\substack{d^k \mid \bar{n}}} |S^{(k)}(d^k, \bar{r})| = \sum_{i=1}^s \left(\prod_{i=1}^s |S^{(k)}(p_i^{k \ell_i}, p_i^{b_i})| \right)$$

where $p_1, p_2 \dots p_s$ are the prime divisors of \bar{n} (hence of \bar{r}), $p_i^{b_i} \mid \bar{r}$, $p_i^{a_i} \mid \bar{n}$ and the summation on the right is extended over all s -tuples $(\ell_1, \ell_2, \dots, \ell_s)$ with $0 \leq \ell_i \leq [\frac{a_i}{k}]$.

Now lemma 2 implies that

$$\begin{aligned} \sum_{\substack{d^k \mid \bar{n}}} |S^{(k)}(d^k, \bar{r})| &= \prod_{p \mid \bar{n}} \left(\sum_{0 \leq \ell \leq [\frac{a}{k}]} |S^{(k)}(p^{\ell k}, p^b)| \right) \\ &= \prod_{p \mid \bar{r}} |g(p^{b-1})| \{ |h(p)| + ([\frac{a}{k}] - b+1) |g(p) - h(p)| \} \\ &= |g(r_*)| \prod_{p \mid \bar{r}} (|h(p)| + c_k |g(p) - h(p)|) \end{aligned}$$

The conclusion in this case now follows in virtue of (2.5), on pushing $|h(\hat{r})|$ into the product (since $p \mid \hat{r} \implies c_k(p) = 0$).

3. FORMULAE FOR RAMANUJAN'S SUM AND ITS GENERALIZATIONS.

Let $f = f(x)$ be a polynomial of positive degree with integer coefficients and, for positive integral r , let $N_f(r)$ denote the number of incongruent solutions $(\bmod r)$ of the congruence $f(x) \equiv 0 \pmod r$. Suppose such a polynomial f , a multiplicative arithmetical function $\eta(n)$ and positive integers k and t are given. Then, by taking $g(n) = n^{kt}$ and $h(n) = \eta(n) N_f^t(n^k)$ ($N_f^t(r) = (N_f(r))^t$) in (2.1) we have the generalized Ramanujan's

sum introduced by Chidambaraswamy [3], viz.,

$$c_{f,t}^{k,n}(n,r) = \sum_{d|n} \sum_{k=1}^{r^t} \frac{\tau_k(\hat{n})}{\tau_k(r)} \frac{d}{n} \mu\left(\frac{r}{d}\right) \frac{t}{N_f} \left(\frac{r}{d}\right)^k. \quad (3.1)$$

This function includes as special cases (see [3]) the Ramanujan's sum $C(n,r)$ and some of its generalizations. In fact, writing $I(n) = 1$ for all n and, for a given positive integer u , $\mu_u(n) = \exp(\pi i \omega(n)u^{-1})$ or 0 according as n is or is not square-free ($\omega(n)$ being the number of distinct prime factors of n), we have $c_{x,1}^{k,I}(n,r) = C^{(k)}(n,r)$

$$(Cohen [4]), \quad c_{x,t}^{1,I}(n,r) = C_t(n,r) \quad (Cohen [5]), \quad c_{x,t}^{k,I}(n,r) = C_t^{(k)}(n,r) \quad (M. Sugunamma [6])$$

and $c_{x,1}^{1,\mu_u}(n,r) = C_u(n,r)$ (C. S. Venkataraman and R. Sivaramakrishnan [7]).

Specializing the functions $g(n)$ and $h(n)$ suitably in our theorem we obtain, for the functions described above, the following formulae:

$$\sum_{d|n} |c_{f,t}^{k,n}(d^k,r)| = r_*^k \tau_k(\hat{n}) \prod_{p|r} (|n(p)N_f(p^k)| + c_k |p^{kt-n(p)N_f(p^k)}|) \quad (3.2)$$

or 0 according as $r_*^k | n$ or not

$$\sum_{d|n} |c_{x,1}^{\mu_u}(d,r)| = r_*^k \tau_k(\hat{n}) \prod_{p|r} (1 + c_1 |p - \exp(\pi i u^{-1})|) \quad (3.3)$$

or 0 according as $r_* | n$ or not

$$\sum_{d|n} |c_t^{(k)}(d^k,r)| = r_*^k \tau_k(\hat{n}) \prod_{p|r} (1 + c_k(p^{kt}-1)) \quad \text{or 0} \quad (3.4)$$

according as $r_*^k | n$ or not

$$\sum_{d|n} |c_t^{(k)}(d^k,r)| = r_*^k \tau_k(\hat{n}) \prod_{p|r} (1 + c_k(p^k-1)) \quad \text{or 0 according} \quad (3.5)$$

as $r_*^k | n$ or not

$$\sum_{d|n} |c_t(d,r)| = r_*^t \tau(\hat{n}) \prod_{p|r} (1 + c_1(p^t-1)) \quad \text{or 0 according as } r_* | n \text{ or not} \quad (3.6)$$

$$\sum_{d|n} |c(d,r)| = r_*^t \tau(\hat{n}) \prod_{p|r} (1 + c_1(p-1)) \quad \text{or 0 according as } r_* | n \text{ or not.} \quad (3.7)$$

Clearly (3.7) is the same as (1.1).

REFERENCES

1. Johnson, K. R. A Result For the 'Other' Variable of the Ramanujan's Sum, Elem. Math. 38 (1983), 122-123.
2. Johnson, K. R. A Reciprocity Law for Ramanujan Sum, Pacific J. of Math. 98, No. 1, (1982), 99-105.
3. Chidambaraswamy, J. Generalized Ramanujan's Sum, Period. Math. Hungar., 10(1), (1979), 71-87.
4. Cohen, E. An Extension of Ramanujan's Sum, Duke Math. J. 16 (1949), 85-90
5. Cohen, E. Trigonometric Sums in Elementary Number Theory, Amer. Math. Monthly 66 (1959), 105-117.
6. Sugunamma, M. Eckford Cohen's Generalization of Ramanujan's Trigonometrical Sum $C(n,r)$, Duke Math. J. 27 (1960), 323-330.
7. Venkataraman, C. S. and Sivaramakrishnan, R. An Extension of Ramanujan's Sum, Math. Student 40A (1972), 211-216.

Special Issue on Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk