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ABSTRACT. We study existence and uniqeness of the nonlinear wave

equation

’-’ll
+ M(x, IvuCx,t)12dx + I-(x,)ldx)C-Au+.) 0

in unbounded domains. The above model describes nonlinear wave plle-

nomenon in non-homogeneous media. Our teeImiques ivolve fixed point

armens combined wih She energy method.
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i. INTRODUCTION

In this paper we prove the existence and uniqueness of a local so-

lution for the following problem:

82u
+ -( II()II) 0

8t
2

u(,o) "o "t (x,) Ul(X)
where M: nx , ,

and

Ilu(t)ll 2 Z IK.(x,t) 12dx + lu(,t) 2

j=l n J n
dx, t > 0

i] a 1)ondod open sl)set of [Rn. ]le ’od a weak local solt,i(,, lot tl,e

using G;lerkin met]od a;tl t]e (liscrc, tc" spectrm oJ" C](." l.tll;’i,t];

el,crater in bouded
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In he oher hand since ]a|, tle mappinl, M depends explicity on

x we can not use Forier transform as was (lono for example, 1)y. G.P.

Menzala ([2]) in which he studied t],e problem (1.1)
that is w]en the mapping M is indel)ondent of x.

Our assumptions about the mapping M are described below.

0

m > 0 .o. in nd M(,X) W(x) +
o (x) 0 a e in Rn

+ f()(x), (x,) nx where f: is continuously differenti-

able with (X) 0 For O.

Wz ,m L]lero (en) { L (n): e (n) j i n} We also

consider the usual Sobolev space (n) with the norm

Ilul[ [(x) dx + lu(x)12dx.
3=1 n 3 n

Our main resul% in this paper will be:

There exis%s a unique local solution for problem (1.1) with the fol-

lowing properties:

Where i We > 0 d eio : nX[o,w2] wi (.)

2 ;2(n))
C([ O,W23 ;H() ).

Du 1
For eh < W u(.,) H2(n) and (.,e) H (). (.)

L2 L2Here C
wice con%inuously differen%iable in [0,T2], v 6 L

(-]-) denoe e u ie= podu in 2(n). We o noe y

H2(n) the usual Sobolev space of order

The basic idea in order %o ob%ain our resu1% will be to use fixed

point argents together with the ener method in appropriate Banach

spaces.

I% is impor%ant %o observe that our main result holds also in any

open subse% of n.
Before concluding this introduction we would like %o make a few

coones on ehe Zieeraeure. J.. Lions ([3]) considered the problem:

(.)
u(,o) u (x), ue(x,0) uz()O

> 0 and denotes a bounded open subset ofwhere () m
0

Ni,i= ([’]), pooo ([]), io ([.6]), iboio ([?])
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2. A PRELIblINARY IESULT

In this section we ])rove [l}e existence and uniqueness oF sol,ion

of ]e following "linearized" problem: Let T > O. Let

C([O,] ;())
2u (0,T]
t2

u(,0) () t(x,0) u()o

From now on we shall denote by H the usual space L2(n) in whic] we

consider the norm I1 = .lu(xll2d and ironer product (-I-). Let

us consider the linear operator A: D(A) c H H defined by A, -A,+u,

with D(A) H2(n). Clearly A is self-adjoill and satisfies:

All functions we consider in this paper will be real valued. The

square root of A, denoted by AI/2 has domain V D(A I/2) Hl(n).
The inner product in V is defined by:

n bu bv dx +July] (A1/2ulA1/2v) Z ax. x.
j=l JRn J J

u(x)v(x)dx
n

with norm !1" !1 defined in i.
For each X 6 we define

Because of our assumptions on M(x,k) the operator B(k) has the fol-

lowing properties:

For each k 6 , B(X) is a linear bounded symmetric operator

on H.

For each ),. ; o ((x),l,) -, I,1o u6 H

For each k O B(k): V V is a linear continuous

bijective operator

V T > 0 ’q T > 0 such that II(x_)-(xe)II.(v
if XI, x=l e. Here (V) is the space of linear

continuous operators on V

M T > O 8T > O such that if (u,v) 6 D(A)xV and Ix T

(::.7)
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PROOF: By (2./4) we can show t],at D(N(t)) D(A), t 6 if{

the image of N(t) is H. IIonco sii,ce AI/2 and B(llv(t)II2) are

symmetric we obtain (2.8).

In the other hand if u D(A) we obtain by (2.i) and (2.3) that

(().) (s(}}()]}2)/2.[Ai/2.) [A/2.[ 2
m u] t]terefore

2
o o

(2.9) oiows.

zo po (e.o) o b (e.8) d t osd p too,

that N(t)[N(0)3 -1 e
Ne consider u H mtd T > 0 then by (2.5) we obtain,

PROP0SITI0S 1. Let u e H3(n) D(A3/2), u
1

e H2(n) and

Then there is a que fction u: H3(n} such that:

u e ce(v) c(e;,(A)) (e.)

(e.e)
u(0) Uo u’ (o) u

PROOF: By Lena 1 and a result due to J. Goldstein (see Theorem 2.2.

in [20]) there is a unique fction w: R H2(n) such that

(o) /e w’ uu (o) /e (z’u)
o

Let us consider u(t) A=l/2w(t) for t e then u:

satisfies (2.11) and (2.12).
Therefore it follows that u is the ique solution of (2.12)

which satisfies (2.11).
PROPOSXTXON 2. Let T be a positive real nmber. Then given

v cl(0,T;V), u H3(n) D(A3/2) and u
1 e H2(n). There s a

unique function u u(v): [0,W] H(n} such that:

u e ce(o,wv) C(o,w;D(A)) (e.)

PROOF We

v(t) if 0 t T

w(*) v’ (T) t-T) +v( t) il" t > T

’ (o)t + (o) ir t < o

w 6 cl(;V) and hence there is u u(w): n which satisfies tle

Proposition I, in particular u satisfies (2.15) and (2.16), wit],

: [ O,T] ,(n).
Remains to prove the uniqueness. Suppose that we have another so-

ton or (e.6) whoh .tr (e.5).
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Then (t) u(t)-z(t) s,tisfies

g" (t) + B(llv(t)ll2)Ag 0 in V x [0,T]

o(o) o o’(o) o

((ll ) oI/We consider (t) lO (t)] + (t)}}2 1/2

(2.17) we obtain that

’ (t) -((l,(t)ll)o’) + ((ll()l)i/oli/eo’) +

+ [()l, (t)] (, ((t)l)i/i/
,o, (e. ) d (e.)

8T 2 2’(t) (lo(t)l + lo’(t)l + cI(t) e

where

u, (’ (ll(t))[z(-) l(*)’ (t))"C
T

0s tsT

Now, usin (2.3) we obtain that there exists DT > 0

’(t) n(t), te (o.].

}{ence, since T (0) 0, it follows t]lt (t) 0,

proves the Proposition 2.

comoLLamr i. Lt e vi(0.W;V(e)), no e H(e)
Th hr i iq, ,: [O,W] H(en) u=h

H
2-- e Ce([0,W] ;,i(n)) n ci([o, w] (ran)) ,d tisrie (e.o).

(2.a7)

then by

such that

% t 6 [O,T] which

SOLUTION OF PROBLGN (I.I)
X
T [u: [0,T] H

is a Banach space with the

Now, we consider

2([Rn). We observe that given

which satisfies (2.15) and

fore, ]’y (2.3)

0
0 0

0

wllere v 6 X
T

2 2 2

’ t < T ,’11 xT
i’ (11 ,’ t)ll )11 a: (,) )"

0

0 t T. Thus

2 t),z(t) z(O) exp(---r Yc 0 t g T.
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(o) o o’(0)

If we define

1 2 2 2G 1/2y(t) I’ (t) + (B(llu(t)l AI/ A

by (2.6) and (3.U), tlen we obtain that:

’ (,.) s..,,llo( ’.)11 Io’ (’.)1 +

+ lI(ll,,()ll)-(ll(e)ll::)ll()i^s()l Io’ ()1 +

I1’ (t)ll I^(*)I I1*’ (ll"(t)ll )ll()llo(t)ll :’-+

-" II,,llxTo = d IIllxT
,’, l;]e,, l,y (2.3), (2- 5) and Lel,,vv,,, 2

alovo we ol)taln tlnxt

(t) <
e IIo11To

+ me Ycr )y(t) + 2aTo r211u-VllYT
O

YTo
Let us consider F 1 1

r
2

T + Then, since that y(O) O,
In C
0

we obtain by (3.5) that
2

..aTor 2F t(.) (o )ilu-ll I1oll o t
_

I" YTo YTo o

i min(l,mo)r
Now, we choose T

1 < rain[To, log (. 2 2
+ I)

/4 aTo
r

If we repeat the proof for 0 < t < TI
g To follows, by (3.6), that:

(1o (t)l + II(t)ll) = e il u-vii I! oll o t T (.)YTI YTI
r2 2FTI

,,here e aT (e I)
min(l,mo)

(3.6)
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E D(A). T]le]l t],ere exists

(].8)

(3.o)

(3.Ii)
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