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ABSTRACT This paper provides a variational formalism for boundary value problems which
arise in certain feilds of research such as that of electricity, where the associated

boundary conditions contain complex periodic conditions. A functional is provided which
embodies the boundary conditions of the problem and hence the expansion (trial) functions

need not satisfy any of them.
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1. INTRODUCTION.

Motivated by complex periodic boundary conditions which arise in certain problems
such as those of modelling the stator of a turbogenerator (see next section for detail),
we give in this paper a variational formalism which takes into consideration such boundary
conditions. We produce a functional which is stationary at the solution of agiven boundary
value problem for a class of expansion functions which do not satisfy any of the boundary
conditions; these are satisfied only at the solution point. Three types of conditions are
considered: 1) Dirichlet conditions, 2) Neumann or mixed conditions and 3) periodic condi-
tions on parallel segments of the boundary.

Let R be a given complex domain with boundary I'. Following the work of Delves and Hall
[1], we split the boundary into four non-overlapping segments Fi i =1,2,3,4 and assume
that periodicity conditions are imposed on the segments I's and Ty such that for some fixed

a, Ty ={y=x+a|xel;}. In this case we have the relations:

n,(x +a) = (n3.n,).n5(x)
and (1.1)
J I(y) ds = J I(x + a) ds
Iy Is
where ng and n, are the unit outward normals to I's and Ty respectively and fds is aline
integral along the boundary with positive direction taken counterclockwise.
2. THE PROBLEM

Let the problem whose solution is sought be of the following form:
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-VZu + B(x)u = g(x), xe2 (2.1.a)
with the prescribed boundary conditions:
u(x) = gl(z), xel,

Vu.n(x) = qu(x) + g,(x), xeT,
(2. 1.b)
u(x) = ePux+a), xer,

Vu.n(x) =—e_ieVu.ﬂ(1+ a), xeT,

where I'; and/or I'; may be void.
In modelling the stator of a turbogenerator where the rotor rotates at angular fre-
quency and is effectively a bar magnet generating a rotating magnetic field, periodic

boundary conditions of the form:

u(x) = ePulx +a)

arise for the first harmonic component; and the normal gradient condition has:

Vu.n(x) = _ei8 Yu.n(x +a)
where 6 is the sector angle. These two conditions are exactly the last two conditionso.
(2.1.b).
3. A FUNCTIONAL EMBODYING THE BOUNDARY CONDITIONS.
In this section we produce a functional which is stationary at the solution of
(2.1) for a class of functions which do not satisfy any of the boundary conditions sinc:

these conditiors are incornorated via suitable terms in the functional J given as:

J(V) = f[vzv + BVZ - 2gV]dx
R

+ 2 Jrl (gl— V)(VV.n) ds

(3.1)
2
-2 Jrz [q/2 vV + gZV]ds

- J [ V(x) - ele V(x + a)][VV(x) - (9_3._4)13_16 VW(x+a)]l.nds
3
Next, it will be shown that if we expand the trial function V about the true solution u,
of (2.1): V = u + ew, where € is a scalar and w is an arbitrary variation, then J(V) is
stationary.
Define

G(e) = J(u+e€w), then

g%ﬂl = 2[ [Vw.Vu + Bwu - gw].ndx
R

+2J [(gl-u)Vw—qu].ﬂds
Iy

- 2[ (qu+g2)wds (3.2)

Iz
i0 -16

- [u(x) -e u(3(_+g)][Vw(5)—(53._4)e Vw(x +a)].nds

3

—J [w(x) - ele w(x+a)][Vu(x) - (n3._4)e—leVu(1 +a).nds

I's - - _ - -

The first lire integral in (3.2) reduces by Green's theorem and (2.1.a) to:
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ZJ {Vw.Vu + Buw - gw] dx ZJ vwWu.n ds (3.3)
R r

.

where we have written the line integral of (3.3) as the sum of four line integrals along

+ Jr; JF+ Jr)(Zqu).Eds (3.4)
3

1 4

the boundaries into which I' has been decomposed. The integrals over I'y and T, of (3.4)
cancel the corresponding integrals over I'; and I, in (3.2) taking into consideration the
boundary conditions in (2.1.b). Also from (2.1.b), it is obvious that the first of the
two line integrals over I'; in (3.2) is equal to zero. What is left is to show that the
last integral in (3.2)(hereafter referred to as LI) cancels the line integrals over T;
and T'y in (3.4). But

LI = —J w(x) Vu(x).nds
3

_J w(i)[—e_ie Vu(x+a)](ns.n,).ny ds
Ty

_ Jr w(£+§)[—eie Vu(x).n] ds
Ty

—I w(l+g)[Vu(l+g)](ﬂ3-24)._n_3 ds
s

Using the relations (1.1) e¢nd the boundary conditions (2.1.b), we get:

LI = —ZJ w(x)Vu(x).nds - ZJ w(x)Vu(x).nds (3.5)
3 l—‘z.

These line integrals over I'; and T, cancel the corresponding ones in (3.4). Hence the
functional J is stationary at the solution u.
4.  MATRIX SET-UP.

To descibe the matrix set-up stage, we consider for convenience and simplicity the
solution of the following one dimensional problem:
dZ

[ dx?

together with the boundary conditions:

+ B(‘zx) ] £f(zx) = G(zx), -l<x<1 (4.1.a)

f(-z) =a , f(z) =8 (4.1.h)

where z is regarded as a parameter that takes any complex value.

We seek an approximate solution fN(zx) to f(zx) of the form:

N
fy(zx) =n2=1 a (z)h (x), -lexgl (4.2)

Then the problem represents a one-dimensional form of (2.1); and the functional J given

in (3.1) reduces to:

2

J) = Jl [(V')2 + BVS - 2GV]dx - 2[a - V(=1)]V'(-1) + 2[B - V(1)]V'(1) (4.3)
1

The coefficients an(z) are defined by the stationary point of J(at the solution where V

= f); that is, by the equations:

La=[A+B+S]Ja=G+H (4.4.a)
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where A, ., and 3 aic .xii matrices; _ anu ii are d-vectors, with components:
1 ! 1

A =J W' hodx, B, = h,B(zx)h _dx, G, = h.G(zx) dx,

1] I N 1j 1 j i o, 1

- (-1 U _ 1 _ _ U _ U 4.4,

SlJ hy( )hJ( 1) + hJ.( l)hi( 1) hi(l)hj(l) hj(l)hi(l), ( b)
Ll Al

H = ahl(-1) - B (1), i, =1,2,...,N.

When using global expansion functions, it is desirable for stability reasons to use

orthogonal polynomials ( see Mikhlin [2]). Accordingly, in (4.2) we take

h_2 =1; h_1

where r =N-3 and Tn(x) is the nth Chebyshev polynomial of the first kind. The reason for

-xih = (1-x)T (0 . n=0,1,2,...,r (4.5)

this choice of basis is the need to handle the derivative terms in the matrix A without
introducing artificial singularities. To calculate the elements in (4.4.b), we expand the
functions B(zx) and G(zx) by Chebyshev series and use Fast Fourier Techniques to approx-
imate the expansion coefficients. Thence we relate the elements Ajj * Bjj and Gj of
(4.4.b) to the coefficients of these expansions. This together with a numerical example
will be considered in a suhsequent paper.

While we do not attempt an error analysis here, the rapidity of convergence in calc-
ulating the matrix equation (4.4) has been considered formally by Delves and Mead [3],
Freeman et al [4] and Delves and Bian [5]. In these papers it is shown that a complete
characterisation of the convergence of the calculation can be given in terms of an
assumed structure of the matix L in (4.4) and the convergence of the Fourier coefficients
of the right hand function G(zx) in (4.1.a). Both a priori and a posterinri *+r - ~-~*ian
error estimates are provided by Delves [6] where a very similar treatment to the one given
in this section is used for Frdholm integral equations and from which we take ( ignoring

the a priori estimate since it contains an unknown constant ):

A posteriori estimate: " —EL-N—(S_l) v NaN (4.6)

s-1
which is a standard bound; s = min(p,q) where p and q depend on the differentiability of
B(zx) and G(zx). The procedure given in this section can easily be extended to two dime-

sions in a straightforward manner and details are omitted.
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