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ABSTRACT. Fourth order boundary value problems arise in the study of the equilibrium

of an elastaic beam under an external load. The author earlier investigated the exis-
tence and uniqueness of the solutions of the nonlinear analogues of fourth order boundary
value problems that arise in the equilibrium of anelastic beam depending on how the ends
of the beam are supported. This paper concerns the existence and uniqueness of solu-

tions of the fourth order boundary value problems with periodic boundary conditions.
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1. INTRODUCTION

Fourth order boundary value problems arise in the study of the equilibrium of an
elastic beam under an external load, (e.g., see [1], [2], [3]) where the existence,
uniqueness and iterative methods to construct the solutions have been studied exten-
sively. The purpose of this paper is to study the fourth order boundary value problem

with periodic boundary conditions:

4
d 2 + f(u)u' + glx,u) = e(x), x ¢ [0, 27],
dx
u(0) - u(2n) = u'(0) - u'(2m) = u"(0) - u"(27m) (1.1)

=u™(0) - u™(2m =0,

where f: R — R is continuous and g: [0,27 x R — R satisfies Caratheodory's
conditions with e ¢ L1[0,2n].

We note that the fourth order linear eigenvalue problem

dx4 (1.2)

u(0) - u(2q) = u'(0) - u'(2m) = u"(0) - u"(2m) = u™(0) - u'" (2m) = 0,
has X =n, n=20,1, 2, ... as eigenvalues. Now the problem (1.1) is at resonance

since the linear operator Lu = Q_% with D(L) = {u € H3(0,2ﬂ) | u(0) = u(2m),
dx
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u'(0) = u'(2n), u"(0) = u"(2mw), u'" (0) = u"(21)} has a non-tirival kernel. (See end
of this introduction for the definition of H3(O,Zn).) We shall prove that the boundary

2n
value problem (1.1) has at least one solution if e(x)dx = 0, and there exists a con-

stant p > 0 such that g(x,ud)u > 0 for |u| > p. To prove the existence of a

solution for the boundary value problem

d4u
- — tou' + g(x,u) = e(x), xe [0,27],
dx
u(0) - u(2n) = u'(0) - u'(2n) = u"(0) - u"(2m) (1.3)

=u" (0) - u™ (2m) = 0,

we also need to assume that

lim sup Eﬁéﬁﬂl =B <1, uniformly for a.e. x <« [0,27].
[u]>e

This is because the second eigenvalue X = 1 of the linear eigenvalue problem (1.2)
interferes with the non-linearity g(x,u) in (1.3). The question of asymptotic con-
ditions in which non-linearity g(x,u) in (1.3) can interact with infinitely many
eigenvalues of the eigenvalue problem (1.2) will be studied in a forthcoming paper [4].

To obtain the existence of solutions for (1.1) and (1.3), we use Mawhin's version
of Leray Schauder continuation theorem as given in [5], [6], [7]. We also show that in
case f = a, where a is a constant, any two solutions of the boundary value problem
(1.1), (respectively, (1.3)), differ by a constant and have a unique solution when, for
example, g(x,u) is strictly increasing in u for a.e. x in [0,27].

We note that in addition to using the classical spaces C([0,27]), Ck([O,Zﬂ]), and
Lk(O,Zﬂ) and 17(0,2m) of continuous, k-times continuously differentiable, measurable
real-valued functions whose k-th power of the absolute value is Lebesgue integrable or
measurable functions which are essentially-bounded on [0,2n] we shall use the Sobolev

space H3(O,2ﬂ) defined by

H3(0,2n) = {u: [0,27] > R | u, u', u" abs. cont. on [0,27],
um e L20,2m}.

1 —_1 (™
Also for u ¢ L (0,2n) we define u = E;-J u(x)dx.
0

2. MAIN RESULTS

Let X, Y denote the Banach spaces X = C1[0,2n], Y = Ll(O,Zn) with usual norms
and let H denote the Hilbert space LZ(O,Zn). Let Y
defined by

2 be the subspace of Y

Y2 = {u e Y|u = constant a.e. on [0,2n]},

and let Yl be the subspace of Y such that Y = Y1 C)YZ' (® denotes the direct

sum.) We note that for ue Y we can write

1 2T 1 2m
u(x) = (u(x) - — J u(t)dt) + — J u(t)dt, x € [0,2m].
Al 0 2m 0

We define the canonical projection operators P: Y —>Y1; Q: Y > Y2 as follows

1 27
P(u) = u(x) - o JO u(t)dt,

1 2m

Q(u) = — J u(t)de,
2m 0

for u €Y. Clearly, Q =1 - P, where I denotes the identity mapping on Y.

and the projection operators P and Q are continous. Now let X2 =Xn YZ'
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Clearly X is a closed subspace of X. Let Xl be the closed subspace of X

2

such that X = X, ® X,. We note that P|X: X ->X Q]x: X -> X, are continuous.

1’
Similarly, we obtain H = Hl C)HZ and continuous projections P|H:H -2 H], QIH:H -> H,

In the tollowing, X, Y, H, P, Q, etc. wi1ll refer to Banach spaces, Hilbert space and

the projections as defined above and we shall ncr distinguish hetween P, P[X PlH
(resp. Q, Q]X, QIH) and depend on the context fo' proper meaning.
2m
Also for u € X, v ¢ Y let (u,v) = EL-J u(x)v(x)dx denote the duality
m
0

pairing between X and Y. We note that for u € X, v ¢ Y where u= Pu + Qu,
v = Pv + Qv, we have
(u,v) = (Pu,Pv) + (Qu,Qv).

Define a linear operator L: D(L) c X ->Y by setting

D(L) = {ue H(0,2m)[u(0) = u(2m), u'(0) = u'(2m),
u(0) = u"(2m), u™ (0) = u™ (2m)) (2.1)
and for u « D(L),

4

a
[

(2.2)

Lu =

&

dx
Now, for u € D(L) we see using integration by parts and Wirtinger's inequality
([8]) that

2m dhu 2n 2 27 2

(Lu,u) = J —7 udx = J u"dx > I [(Pu)(x)]1%dx > O. (2.3)
0 dx 0 0

LEMMA 2.1: - For a given a¢ R and h ¢ Yl’ i.e. h eLl(O,Zn) with h = Qh = 0,
the linear boundary value problem
dhu
7 tau' = h(x), x € [0,2n],
dx (2.4)

u(0) = u(2m), u'(0) = u'(2n), u"(0) = u"(2x), u" (0) = u™ (2m),

el

has a unique solution wu(x) with = Qu = 0.

PROOF:- Let us set w= Cos 2% + i Sin %1 , 1i=,/-1, so that 01/3, wa1/3,
w2a1/3 are the three cube roots of o ¢ R. For x ¢ [0,21], we , define

x _ 1/3wx X a1/3 .

v, () = [ h(t)de, v,(x) = e * J v, (ee® Yhae,
0 0o -
_1/32 (x 1/3 9 /3 (x 1/3

v3(x) = W XJ v.(t)e® ¥ tdt,v(x)= e * X I 2 Yo (t)de.

o ? 0 3
S1/3, 1/3 132,
Then u(x) = C, + Che + C3eﬂ1 wx +CLe W * 4 v(x) is such that R1(u(x))

is a general solution of the equation (2.4).

Next, we compute Cl’ C2’ C3, C4 using the boundary conditions in (2.4) and
- m
and the condition u = L u(x)dx = 0. C_, C., C, are computed uniquely from the
2n 0 2 3’ 74
three linearly indpendent equations

1/3 1/3
C, + - a2 - 1/3. 2
2t Gyt C, Cye o, cge o 2my Cae_a 2mw + v(2m),
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1/3 1/3 1/3,_2 _
2 o' T2m o T2mw 2, o Tzmw” _ mL/3 o
= C QL v ),
CZ + wC3 +w Ch Cze + wC3e *wCe
1/3 1/3 1/3 2
-a 72w 2. -0 T2mw o T2mw -2/3_,,
C2 + mzc3 + wcl‘ = Cze +w C3e + wC‘.e +a v'(2n).
_ 1 2m
The constant 01 is computed uniquely using the condition u = e I u(x)dx = 0.
0

In this way we get Rl u(x) as the unique solution for (2.4).//

27
For h ¢ Yl, i.e. h e L1(0,2n) with h =;—" J h(x)dx = 0; let u = Kh be

the unique solution of the problem

d['u
= h(x), x € [0,2n],
dx

u(0) = u(2m), u'(0) = u'(2w), u"(0) = u"(2m), u''(0) = u™(2m),
2m
such that u = #I u(t)dt = 0. It is immediate that the linear mapping
0

K: Yl - Xl is bounded and for u €Y,

KP(u) € D(L), LK P(u) = P(u), and (KP(u), P(u)) > 0. (2.5)

Let f: R —> R be continuous and let g: [0,2n1] x R - R, (x,u) = g(x,u)
be such that g(.,u) is measurable on [0,2n] for each u € R and g(x,.) is
continuous on R for almost each x € [0,2m]. Assume, moreoever, that for each
r > 0 there exists an a ¢ LI(O,Zﬂ) such that |g(x,u)| < ar(x) for a.e. x € [0,27]
and all wu € [-r,r]. Such a g will be said to satisfy Caratheodory's conditions.

Now define N: X -> Y by setting

(Nu)(x) = f(u(x)) u'(x) + g(x,u(x)), x € [0,27],

for u ¢ X. It follows easily from Arzela-Ascoli theorem that KPN: X -> Xl is

a well-defined compact mapping and QN: X -> x2 is bounded.

For e(x) e Y = Ll(O,Zn), the boundary value probelm (1.1) now reduces to the
functional equation
Lu + Nu = e, (2.6)
in X with e € Y, given.
THEOREM 2.2:- Let f: R -> R be continuous and let g: [0,27] x R -> R
satisfy Caratheodory's conditions. Assume that there exist real numbers a, A, r
and R with a <A and r < 0 <R such that
g(x,u) > A, (2.7)
for a.e. x € [0,2n] and all u < R; and
g(x,u) < a, (2.8)

for a.e. x ¢ [0,2n1] and all u < r. Then the boundary value problem (1.1) has at

least one solution for each given e ¢ L1(0,2‘n) with

a<e<A. (2.9)
PROOF : - Define g: [0,2n] x R -> R by gl(x,u) = g(x,u) -% (a + A) and

1
e L (0,21) by el(x) = e(x) -% (a + A), so that, for a.e. x ¢ [0,27],
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using (2.7), (2.8), (2.9) we have

gl(x,u) 2.%'(A -a)>0 if u>R, (2.10)
1 i (2.11)
gl(x,u)i-z‘(a-A)io if u<r, .
and
la-mce <2a-a. (2.12)
2 - 1-=2

Clearly, the boundary value problem (1.1) is equivalent to

4
d Z + f(u)u' + gl(x,u(x)) = el(x), x € [0,27],
dx (2.13)
u(0) = u(27m), u'(0) = u'(2m), u"(0) = u"(2m), u"(0) = u"(2m).
Let N: X - Y be defined by
(Nu)(x) = f(u(x))u'(x) + gl(x,u(x)), x € [0,2T], (2.14)
for u ¢ X. We then see, as above, that KPN: X -> X1 is a well-defined compact
'mapping. QN: X -> X2 is bounded and the boundary value problem (2.13) is
equivalent to the functional equation,
Lu + Nu = ers (2.15)
in X with e € Y. Setting, é& = KPe, we see that to solve the functional
equation (2.15) it suffices to solve the system of equations
Pu + KPNu = e,
QNu = El, (2.16)
u € X. Indeed, if u € X 1is a solution of (2.16) then u <« D(L) and
LPu + LKPNu = Lu + PNu = LEI = Pe,,
QNu = e1 = Qel,
which gives on adding that Lu + Nu = e
Now, (2.16) is clearly equivalent to the single equation
Pu + QNu + KPNu = e, + e (2.17)

1’
which has the form of a compact perturbation of the Fredholm operator P of index
zero. We can therefore apply the version given in [6] (Theorem 1, Corollary 1) or
[5] (Theorem IV.4) or [7] of the Leray-Schauder Continuation theorem which ensures
the existence of a solution for (2.17) if the set of solutions of the family of

equations,

Pu + (1-A)Qu + AQNu + AKPNu = xEl +xe., A€ (0,1), (2.18)

1’
is, a priori, bounded in X by a constant independent of A. Notice that (2.18) is
equivalent to the system of equations,
Pu + AKPNu = Xe;, (2.19)
(1-)\)Qu + A\QNu = AZI, x € (0,1).

Let for A ¢ (0,1), uy € X be a solution of (2.19) so that
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PUA + AKPNuA = Ael,

(l-)\)QuA + XQNuX = Ael.

The second equation in (2.20) can now be written as

1

2m A 2m
(1-1) = — Jo UX(X)dx * o lo gl(x'u)‘(’())dx

2m

So, if “A(X).Z R for x ¢ [0,2n] we have, using (2.10), (2.12) that

A A
0((1—)\)R+§-(A a)_<_§'(A-a),

0<(1-2X)RZO0, a contradiction.

Similarly if UA(X) <r for x € [0,2n] leads to a contradiction. Hence, there

exists a T € {0,2n] such that

r < uA(TA) < R.

Now, for x ¢ [0,2m] we have

x
UA(X) = uA(TA) + JT u! (s)ds,

A

so that A

2m
lu, GO < max (R,-£) + (zn>1’2(f (u) (sN%as)/?
0
27
< max (R,-r) + (zn)l/z(J (u(s2)%ds)

0

since o € D(L), Wirtinger's inequality applies. Thus,

lluy Ny < cqlhug 11y + €,
for some constants Cy, C2 independent of .

Next, the first equation in (2.20) gives that

= ALe,,

LPuA + ALKPNUA 1

LuA + APNuX = APel.

From (2.23) and the second equation in (2.20), we get

(LuA,Pux) + A(PNu Pux) = A(Pel,PuA),

x)

(1-0)(Qu,,Qu,) + A(QNu,,Qu,) = x(;;, Qu,).

We next note that our assumptions on g, and (2.10), (2.12) imply that there i

constant C indpendent of X such that for u € X,

3’
(Nu,u) Z -C3)
2n 5 2
and  (Lu,,Pu)) = (Luy,u,) = J (u;) = ||u'>"[|H since

0
get on adding the equations in (2.24) that

(2.3) holds. Using this we

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)
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Hu'A'H,zi -Gy < (Lux,u)‘) + (1—>\)(Qu>\,Qu)‘) + )‘(Nux’ux)
= A(Pel,PuA) + A(el’qu)
< cyllu, lly
<0 Hluylly + €4,

where C4 is a constant independent of ). Accordingly, there is a constant CS’

independent of A, such that

" <
”U)\”H_ C5’
which implies, using (2.22) that
”u)‘ng €,Cs + C, =C.
We have thus proved that the set of solutions of the family of equations (2.18) is bounded

in X by a constant independent of A € (0,1). Hence the theorem.”

REMARK 2.3:- If we take a = A = 0 in Theorem 2.2, then we immediately obtain the
assertion made in the introduction concerning the boundary value problem (1.1).
Now, to study the boundary value problem (1.3) we define, for a given o ¢ R, a

‘linear operator La: D(La) c X+ Y by setting

D) = fu e 100,21 | w(0) = u(2m), w'(0) = wr(2m), w"(0) = u"(2m),

(2.25)
u™(0) = um(2m}
and for u ¢ D(L ),
a
d4
Lu=-52 4+ qu'. (2.26)
a 4
dx
It follows, using integration by parts and Wirtinger's inequality, ([8]), that
m d& 2m
(L u, u) = -J ——% udx + aI u'u dx
@ 0 dx 0
2 2n 4 2
=-J (u")zdxg-J (—d—Z) dx (2.27)
0 0 dx
2
> - il

We, next, use lemma 2.1 to define a bounded linear mapping Ka :Y1 > Xl by setting

u = Kuh for a given h e Y where u € Xl (so that u = Qu = 0) is the unique

1’
solution of the boundary value problem
d4
- z + oqu' = h(x), x e[0, 27],
dx (2.28)

u(0) = u(2m), u'(0) = u'(2m), u"(0) = u"(2m), u"(0) = u"'(2m).

The bounded linear mapping Ka : Y1 > X1 defined in this way has the following

properties:
(i) f =
or ucelY, KaP(u) € D(La)’ LaKaP(U) P(u) and

(K P(w), P(u)) > - |[Pu[|}2{, (in view of (2.27)); (2.29)

(ii) if g : [0, 21n] x R » R satisfies Caratheodory's conditions and N : X » Y
is defined by setting
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(Nu)(x) = g(x,u(x)), x « [0, 27u]
then KaPN : X > Xl is a well-defined compact mapping and QN : X » )(2 1s bounded.
Theorem 2.4: Let a € R be given and g : [0, 2n] x R » R satisfy Caratheodory's
conditions. Assume that there exist real numbers a, A, r, R with a < A, and
r <0 <R such that
g(x, u) > A, (2.30)

for a.e. x ¢ [0, 2n], and all u > R; gnd

glx, u) < a, (2.31)

for a.e. x € [0, 2n], and all u < r. “Suppose, further, that

lim sup |5(—’i—f-‘ll| =B <1 (2.32)
uf- oo

uniformly for a.e. x € [0, 2n]. Then the boundary value problem (1.3) has at

least one solution for each given e ¢ L2[0, 2n] with
a<ec<A. (2.33)

Proof:- As in the proof of Theorem 2.2, define I [0, Zn] x R+ R by gl(x,u) =
g(x,u) -% (a + A) and e LZ(O, 2m) by el(x) = e(x) —% (a+A). Then for a.e.
x ¢ [0,21],

gl(x,u) 2% (A-a)>0 if u >R, (2.34)

gl(x,u) i% (a-A)<oO if u<r, (2.35)
g. (x,u)

lmf‘;" —— - <1, (2.36)

uniformly, and

l(a-A)i_e—

1
> <5 a-a). (2.37)

1

Also the boundary value problem (1.3) 1is equivalent to

4
-4 ll: +au' + gl(x,u) = el(x), x € [0, 27m],

dx

(2.38)
u(0) = u(2mw), u'(0) = u'(2m), u"(0) = u"(2m), u"(0) = u'(2m).

Next, let N : X » Y be defined by

Nu(x) = gl(x,u(x)), x € [0, 27],

for u € X. Choosing, now, € > 0 such that B + € < 1, we see, using the fact that
g, satisfies Caratheodory's conditions and (2.34), (2.35), (2.36), that there exists

a constant C(€) > 0 such that

(Nu,u) 2 7= w2 - e, (2.39)

for u ¢ X. Also, l(aPN : X > X, is a well-defined compact mapping and QN : X - )(2

is bounded.
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Again, we sce as 1n tae proof of Theorem 2.2, that the boundary value problem

(2.38) is equivalent to the system of equations

Pu + K PNu = e. = K Pe_,
« L (2.40)

QNu = el.

Further, it suffices to prove that the set of solutions of the family of equations

Pu + AK PNu = AEI
o (2.41)

(L-2)Qu + AQNu = X e A € (0,1)

1’
is, a priori, bounded in X by a constant independent of A ¢ (0,1).

Let, now, for X € (0,1), uy € X be a solution of (2.41) so that

Pu, + AK PNu, = )e
a

* oo (2.42)
(@] —).)QuA + )\QNuA = Xel.
It, now, follows from the second equation in (2.42), in a manner similar to deriving

the estimate (2.22) in the proof of Theorem 2.2, that

”Qu)‘” .S. ”uxllxi Cl ”L(X.u)\”l{ + CZ’ (2.43)

for some constants Cl’ C2 independent of A ¢ (0,1).
Also, we have from (2.42) that
)
(Pux, PNu,) + A(KaPNu

PNu) = A(e PNu, ),

x’ 1’

Z _ —
(1-2) ]lqu|| + A(QUA, QNux) = A(el, qu).
These equatioas then give us, in view of (2.29) and (2.39), that

1

2 2
e Iyl - llenay (14 - cte) < (Nuy,up) + A(K,PNu), PNu,)

(e

I~

1 PNuA) + (;1, QuA).

Using, now, the facts that ”Pv”H _5_||v“H for v €X, and B + € <1, we see that

these exist constants C3, CA independent of A ¢ (0,1) such that

1/2
”NUA“H £.C3 “QuX”H + C4' (2.44)

Now, the first equation in (2.42) gives that

Lau + APNuX = xPel,

A

so that

gy [l < Mlpey = onuy [l < flpey Il + [l2vu, I,

I~

[N

1/2
¢,llowy 1" + ¢, + fiee, I,

A

(2.43) and (2.45) now imply that there exist a constant Ce, independent of A ¢ (0,1),

such that
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llau, Il < c

and

lluyllx < €,€4 VCg v ciey + Cllpey Il + ¢, = c.

This completes the proof of the theorem //.

Remark 2.5:- The analogue of Theorem 2.4 when a in (1.3) is replaced by f(u), where

f: R> R 1is a given continuous function will be treated in a forthcoming paper [4].

Remark 2.6:- If f(u) = a, a ¢ R given and g(x,u) 1is strictly increasing in u
for a.e x ¢ [0, 2m] then it is easy to see that the boundary value problem (1.1) has
exactly one solution. Similarly if g(x,u) 1is strictly increasing in u and there

is a B <1, such that
2
(g(x,ul) g(x,uz))(u1 - "2) Z_B(g(x,ul) - g(x,uz)) s
for a.e. x 1in [0, 27m], then the boundary value problem (1.3) has exactly one solution.

Remark 2.7:- 1If we take a = A = 0 1in Theorem 2.4, we immediately obtain the assertion

concerning the boundary value problem (1.3) in the introduction.
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REFERENCES
1. AGARWAL, R.P. Boundary Value Problems for Higher Order Differential Equations,
World Scientific, Singapore, Philadelphia, PA, 1986.

2. AGARWAL, R.P., CHOW, Y.M. Iterative Methods for a Fourth Order Boundary Value
Problem, Jour. Comp. Appl. Math. 10 (1984), 203-207.

3. USMANI, R.A. Solving Boundary Value Problems in Plate Deflection Theory, Simulation,
December 1981, 195-206.

4. GUPTA, C.P. Asymptotic conditions for the solvability of a fourth order boundary
value problem with periodic boundary conditions. (Under preparation).

5. MAWHIN, J. Topological degree methods in nonlinear boundary value problems. CBMS -
Regional Conference Series in Maths. No. 40, (1979) American Mathematical
Society, Providence, R.I.

6. MAWHIN, J. Landesman - Lazer type problems for nonlinear equations. Conf. Sem.
Mat. Univ. Bari no. 147, (1977).

7. MAWHIN, J. Compacite', monotonie, et convexite dans l'etude de problems aux
limites semi-lineaires. Sem. Anal. Moderne No. 19, (1981) Universite' de
Sherbrooke, Quebec, CANADA.

8. HARDY, G.H., LITTLEWOOD, J.E., and POLYA, G. Inequalities, Cambridge University
Press, London and New York, 1952.

9. GUPTA, C.P. Existence and uniqueness theorems for the bending of an elastic beam
equation. Applicable Analysis (to appear).

10. GUPTA, C.P. Existence and uniqueness theorems for the bending of an elastic beam
equation at resonance. Jour. Math. Anal. & Appl. (to appear).



Mathematical Problems in Engineering

Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years
for one-, two-, and three-dimensional space. Additionally,
such dynamical systems can exhibit a very important and still
unexplained phenomenon, called as the Fermi acceleration
phenomenon. Basically, the phenomenon of Fermi accelera-
tion (FA) is a process in which a classical particle can acquire
unbounded energy from collisions with a heavy moving wall.
This phenomenon was originally proposed by Enrico Fermi
in 1949 as a possible explanation of the origin of the large
energies of the cosmic particles. His original model was
then modified and considered under different approaches
and using many versions. Moreover, applications of FA
have been of a large broad interest in many different fields
of science including plasma physics, astrophysics, atomic
physics, optics, and time-dependent billiard problems and
they are useful for controlling chaos in Engineering and
dynamical systems exhibiting chaos (both conservative and
dissipative chaos).

We intend to publish in this special issue papers reporting
research on time-dependent billiards. The topic includes
both conservative and dissipative dynamics. Papers dis-
cussing dynamical properties, statistical and mathematical
results, stability investigation of the phase space structure,
the phenomenon of Fermi acceleration, conditions for
having suppression of Fermi acceleration, and computational
and numerical methods for exploring these structures and
applications are welcome.

To be acceptable for publication in the special issue of
Mathematical Problems in Engineering, papers must make
significant, original, and correct contributions to one or
more of the topics above mentioned. Mathematical papers
regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

December 1, 2008
March 1, 2009

‘ Manuscript Due

‘ First Round of Reviews

June 1, 2009

‘ Publication Date

Guest Editors

Edson Denis Leonel, Departamento de Estatistica,
Matemadtica Aplicada e Computagdo, Instituto de
Geociéncias e Ciéncias Exatas, Universidade Estadual
Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro,
SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State
University, Vorob’evy Gory, Moscow 119992, Russia;
loskutov@chaos.phys.msu.ru

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1Call for Papers-4pt
	Guest Editors

