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ABSTRACT. For every homomorphism ¢ of a graph G there exists a contraction e¢ on G,
the complement of G. Here we study the graph equation ¢(G) = 0¢(§). In the course
of our work we show that Hadwiger's Conjecture is true for every self-complementary

graph.
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1. INTRODUCTION.

By a graph of order n we mean a set V(G) of n vertices together with a set E(G)
of unordered pairs of distinct vertices in V(G) called edges. A graph G is isomorphic
to a graph H if there is a bijection from V(G) onto V(H) which preserves both
adjacency and non-adjacency, in which case we will write G = H. A graph with the
property that G = G, where G denotes the complement of G, is called self-complementary.

An elementary homomorphism of a graph G is the identification of two non-adjacent
vertices of G, and a homomorphism is a sequence of elementary homomorphisms. Thus a
homomorphism of a graph G onto a graph H is a function ¢ from V(G) onto V(H) such that
whenever u and v are adjacent in G, ¢(u) and ¢(v) are adjacent in H. Likewise, an
elementary contraction of a graph G is the identification of two adjacent vertices of
G, and a contraction is a sequence of elementary contractions. Thus for every

homomorphism ¢ of G there is a contraction 6, of G that we may construct as follows:

¢

¢ is a sequence of elementary homomorphisms 51,62,...,en each of which identifies

two non-adjacent vertices in G, so we let 6, be the sequence of elementary contrac-

¢ -
tions 01,62,...,0n such that 01 identifies the same vertices in G that gy identifies
in G.

Recently [1] the graph equation ¢(G) = 9¢(§) was studied. Here we consider a

similar equation, namely,
$(6) = 9¢(6) . (1.1)

We will employ the following notation as the need arises: pG(u) will denote the
valency of the vertex u in G and AG(u) will be the set of all vertices in G that are
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adjacent to u. Thus DG(u) = |AG(u)| , where IAG(u)| is the cardinality of the set
AG(u). As usual X(G) will denote the chromatic number of G.
2. SOME GENERAL RESULTS.

THEOREM 1. There is no graph G of order n > 1 such that (l.1) is satisfied for
every homomorphism ¢ of G.

If G is not self-complementary then the identity homomophism and its related
null contraction suffice to satisfy the theorem. We will postpone the remainder of
the proof until section 3, where we restrict our attention to results on self-
complementary graphs.

THEOREM 2. If there exists a homomorphism ¢ of G that satisfies (1.1) then:

(a) G must be connected.

(b) G cannot be a tree of order n 2 5.

PROOF. (a) If G is not connected, then no contraction of G is connected.
However, G not connected implies G is connected, thus every homomorphic image of G
will be connected.

(b) If G is a tree of order n 2 5 then G and every homomophic image of
G contains K3, the complete graph on three vertices, as a subgraph. But every
contraction of G will be a tree and so cannot contain K3 as a subgraph.

THEOREM 3. If x(G) = 2 and G is connected then there exists a homomorphism ¢
such that ¢(G) = K2 = 9¢(§).

PROOF. Since G is connected, the image of G under any contraction will be
connected. Thus every contraction of G onto two points must have KZ as its image.
From [3] we know that there exists a homomorphism ¢ of G such that ¢(G) = K

x(6)*
Hence, using this homomorphism and its related contraction, we have ¢(G) = K, =6, (G).

2 ¢

Since every homomorphism is a sequence of elementary homomorphisms, we now
turn our attention to the equation

e(6) = 6.3 , 2.1)

where € is an elementary homomorphism.
THEOREM 4. If G satisfies (2.1) then

X(6) - 2 5 x(G) s x(B) + 1.

PROOF. In [3] Harary et. al. proved the following inequalities:

IA

x(6) = x(e(G)) = x(6) +1

X@© - 15 x(6,(®) £ x@ + 1.

Since (2.1) holds we have X(e(G))
x(ee(é)) equals either X(G) or x(G) + 1. Putting these values into the second

x(ee(é)), and so from the first inequality

inequality above yields:

A

x(G) - 1 2 x(6) s x(@) +1

A

X(6) - 2 £ x(G) s x(B) ,
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which completes the proof.
The following result will be needed in the next section.
LEMMA 1. Let G be of order n and € an elementary homomorphism that identifies

v, and u, in G. If (2.1) holds then

-1
IAG(ul) n AG(u2)| = |A(—;(u1) n A(—;(uz)l + 1+ 2|E@G)]| - 5‘-&“71 .

PROOF. If € identifies u; and u, in G we have |ECe(6)) | = |E@) ]| - lAa(ul)ﬂAG(uz)l,
since when an elementary homomorphism € is applied to a graph G, €(G) will lose one
edge for each vertex which is adjacent to both vertices that were identified, and

all other edges will remain in €(G). Likewise, by the same reasoning as above,
|E(9€(a))l = 'E(6)| - |Aa(ul)f1A§(u2)| - 1, where the extra edge removed is the one
which was contracted. Now if (2.1) holds both €(G) and ee(c) must contain the same

number of edges. Thus

[E@)| - [agu) 0 Ay | = [E@ | - [agu) 0 Az -1,

where IE(§)| = Ei%fll - IE(G)|, which proves the lemma.

3. SELF-COMPLEMENTARY GRAPHS.

We first summarize some results from [4], [5] and [6] that will be needed. Let
S be a self-complementary graph. If S is of order n then n = 0,1(mod 4). Suppose
f is an isomorphism such that £(S) = S . If n = O(mod 4) then f has no fixed vertex,
that is f(u) # u for all u € V(S). However if n = l(mod 4) there exists precisely
one fixed vertex for f, and moreover any such S can be constructed by appropriately
adding this fixed vertex, of valency E%l , to a self-complementary graph of order

n-l if and only if

n-1. Lastly there are regular self-complementary graphs of degree >

n = 1(mod 4).
We will assume throughout this section that S in nontrivial, that is n > 1. The
following sequence of four lemmas will complete the proof of Theorem 1.

LEMMA 2. If S is of order n = O(mod 4) then there exist vertices ujsuy € V(S)

2
such that uju, ¢ E(S) and ps(ul) = ps(uz).

PROOF. Since n = O(mod 4), any given valency that occurs in S will occur an
2 € V(S) such that
ps(ul) = ps(uz). Now let £f(S) = S, then ps(ul) = ps(uz) implies p;(f(ul)) =o§(f(u2))
and also ps(f(ul)) = ps(f(uz)). But uu, € E(S) if and only if f(ul)f(u2)¢ E(S)
and so uju, or f(ul)f(uz) satisy the lemma.

even number of times, [4]. Thus there are vertices u;su

n(n-1)
— Thus

REMARK. For any self-complementary graph S of order n, IE(S)I =
from Lemma 1, if € is an elementary homomorphism of S which identifies the vertices
u; and u, and e(S) = OQ(S), then IAs(ul) n As(uz)l = IAg(ul) n Ag(u2)| + 1.

LEMMA 3. 1If S is of order n = O(mod4) then there is an elementary homomorphism
€ of S such that €(S) # 9€(§).

PROOF. Using Lemma 2 choose u;su, € V(8) such that uu, ¢ E(S) but

2
ps(ul) = ps(uZ)' Now for any u € V(S) that is distinct from uy and u,, u can be

adjacent to both u1 and uz, neither u1 nor Uy, or adjacent to one and not the other.
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Thus we have

As(ul) = {u2""’akl’bl""’b£} As(uz) = {al,...,akl,cl,...,cl}

AE(ul) = {uz’dl""’dkz’cl""’cl} Ag(uz) (ul’dl"‘"dkz’bl""’bl}

= = - N A-
where k1 lAs(ul) n As(u2)| and k2 lAs(“l) AS(uz)l. Let € identify uy and u,

and suppose €(S) = es(é), so that from the proceding Remark k1 = k2 + 1. Then

n-1 = ps(ul) + pg(ul) = (k14-l) + (k2 +1+48) = 2k1 + 22 .

Hence n = Zk1 + 20 + 1 # O(mod 4), a contradiction.

We now consider those self-complementary graphs of order n = l(mod 4) and let
v be the fixed vertex, of valency B%l , under the isomorphism f(S) = S.

LEMMA 4. Let S be of order n = 1(mod 4) and € be an elementary homomorphism
that identifies any u € V(S) with v. If €(S) = 6€(§) then S is regular.

PROOF. Let £f(S) = S, then for any u” € V(S) distinct from v, vu” € E(S) if
and only if v f(u”) ¢ E(S) while ps(u‘) = ps(f(u’)).

Suppose S is not regular, then there is a vertex u € V(S) such that ps(u) # B%l
and, from the observation above, vu ¢ E(S). Now let € identify this vertex u and

v and suppose €(S) = e€(§). We have, as in the proof of Lemma 3,

As(v) = {al,...,ak sbysaeesb ) } As(u) = {al,...,ak ,cl,...,cl}
1 — -k 1
2 1
Ag(v) = {u’dl""’dk ’Cl""’cl} A;(u) = {v’dl"'°’dk ’bl""’bn—l }
2 2 —-k
2 1
= = |a- - —(v) = ol
where k1 = |As(u) n As(v)l and k2 = IAS(u) n As(v)| . But ps(v) 7 and so
Il S = =98 (S
L = 5 (k2 + 1), and kl = k2 + 1 since €(S) OE(S). Hence

%(u) = k1 + 2 = k1 + E%l - (k2 + 1) = E%l , a contradiction.

LEMMA 5. If S is a regular self-complementary graph then there is an elementary
homomorphism € such that e€(S) # 9€(§)
PROOF. First note that S v is self-complementary, with E%l vertices of valency
E%l and E%l vertices of valency E%é . Thus there are n-l edges joining every

2
vertex of valency E%l to the vertices of valency E%Q » and these must appear in

either S v of S v . Since Sv =S v these edges must be equally divided between
S v and its complement. When v is added to S v to form S it is adjacent to every
vertex of valency 952 . Thus if u € V(S v) such that pS v(u) = Egl , we have

laj A | =51,

Now S is regular of degree 2%1 and we let € identify u, as described above, and

v. Assume €(S) = 0€(§) and u” € V(e(G)) is the image of u and v under € . Then

p&:(s)("l ) = pg(w) + p (V) = [AS(u)) N A ()]
n-1 n-1 n-1

-l nl pn-1 _ gl
=Tt 3 7z - 3G
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since every vertex adjacent to both u and v in S will only account for one edge

incident to u” in €(S). Similarly

- (u’) = p- - - |a- n A- - s
°6€(s)(“) Pz(u) + p=(v) = [Az(u) N AZ (V)] 2
where the 2 is substracted since the edge contracted under ee is incident to both u
and v. However since €(S) = 9€(§) we must have |As(u) n As(v)| = ]Ag(u) n A;(v)| + 1,
and so

-y=0l -l -l ) gm-ly
Po 3" =TT 7 z " l=3G) -1

Every other u e V(GE(§)) has valency DE(G) -1-= E%Q or (u) ——l depending on

- _ 0 A .
whether or not u € As(u) As(v). Therefore pe(s)(u ) > pee(s)(u) for every vertex

u in 6€(§), and hence €(S) # 6€(§) since isomorphisms must preserve valencies.

Now that the proof of Theorem 1 is complete we will show that for every self-
complementary graph there is a homomorphism ¢ which satisfies (1.1).

LEMMA 6. Let S be of order n and £(S) = S. Then in the set
vV = {(uif(ui))|ui€ V(S), i=l,...,n} precisely m = [%] are non-adjacent pairs of
distinct vertices in S.

PROOF. Let u € V(S) such that f(u) # u. Then u and f(u) are adjacent in S if
and only if f(u) and f£(f(u)) are non-adjacent in S. Now f is an isomorphism, and so
f(u) and f(f(u)) must also be distinct vertices of S. Hence for every pair of
distinct non-adjacent vertices in V, there is a pair of adjacent vertices in V and
conversely. Thus there must be m = [51 pairs of distinct non-adjacent vertices in V.

THEOREM 5. Let S be of order n and m = [%]. There exists a homomorphism ¢ of
S such that ¢{S) =K __ = 9¢(§).

PROOF. For each of the m pairs of distinct non-adjacent vertices provided by
Lemma 6, there exists an elementary homomorphism g of S that identifies uy and f(ui).
Let ¢ = el,ez,...,em so that both ¢(S) and © (S) will have n-m vertices.

Suppose ¢(S) # K o’ then there are vertices u;su, € V(4(S)) such that

u, ¢ E(4(S)). Let ¢ 1(ul) = (al,a } and ¢ (u ) = {bl’b }. Thus a, # bl’
f(al) = a, and f(bl) = b where £(S) = S. Now u 192 ¢ E(4(S)) implies a; 1 ¢ E(S)
and so f(al)(Bl) ¢ E(§). But then f(a YE(b ) = 1 2 € E(S) and so uu, € E(¢(S)), a
contradiction. Thus ¢(S) = n-m' By an argument virtually identical to the one just
given it follows that 9¢(S) = Kn-m’ which proves the theorem.

From [3] we know that the smallest homomorphic image of any graph G is a complete
graph of order x(G). Thus from Theorem 5 we have x(S) < n - [%] for every self-
complementary graph S of order n. However if a graph is contractable to a complete
graph of order t, then it has a complete contraction of order k for 1 < k £ t, also
from [3]. Hence Theorem 5 shows that every self-complementary graph satisfies
Hadwiger's Conjecture [2], that is, every self-complementary graph S has a complete
contraction of order x(S).

4. CONCLUDING REMARKS.

It would certainly be desirable to find some simple necessary and sufficient
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conditions on the graph G, and perhaps on G, to ensure the existence of a homomorphism
¢ such that the graph equation ¢(G) = 9¢(6) holds. Given that such conditions can be
found, we would like to be able to construct the appropriate homomorphisms for which
the equation holds or perhaps enumerate those homomorphisms of G that satisfy the

equation. All of these problems remain open.
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