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1. INTRODUCTION.

In a Boolean ring, every element is trivially a product of idempotents. On the
other hand, in a nil ring, every element is trivially a product of nilpotents. This
motivates the study of the structure of a ring, which as a semi-group, is generated
by its idempotents, or is generated by its nilpotents, or more generally, is
generated by its idempotents and nilpotents. Indeed, we prove that a ring which is
multiplicatively generated by its nilpotents is nil if it is Artinian or if it
satisfies the polynomial identity o= xm+1 f(x) (f(x) 1is a polynomial with integer
coefficients). We also prove that if R 1is a ring which is multiplicatively
generated by its idempotents and nilpotents such that the set N of nilpotent
elements is commutative, then N forms an ideal of R and R/N is Boolean. We
also give examples to show that our conditions are essential for the validity of our
theorems.

We start with the following definitions, the first of which was introduced in [1].

DEFINITIONS. A ring R 1s called an I-ring if as a semigroup R 1is generated
by its idempotents. A ring R 1is called an N-ring if as a semi-group R 1is
generated by its nilpotents. R 1is said to be an NI-ring if as a semigroup R is
generated by its idempotents and nilpotents.

The following two theorems were proved in [1].

THEOREM A. Let R be an I-ring with identity. Then R 1is Boolean.

THEOREM B. Let R be a finite I-ring. Then R is Boolean.

REMARKS.

1. A homomorphic image of an I-ring, N-ring, or an NI-ring is an I-ring, N-ring, or
an NI-ring.

2. If R is an N-ring with identity, themn R = {0}.

3. Trivially, every I-ring and every N-ring is an NI-ring.
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4, An I-ring need not be Boolean as shown in [1]. An N-ring need not be nil (see
Example 1 below). An NI-ring need not be neither Boolean nor nil (see Example 2
below).
2. MAIN RESULTS.

In preparation for the proofs of our theorems, we start with the following lemmas.

Lemma 1 is known but we give its proof for completeness.

LEMMA 1. Let R be a ring such that for some positive integer m, and some

polynomial f(x) with integer coefficients, " = xm+1 f(x) for all x in R. Then

= xm(f(x))m is an idempotent of R for all x in R.
PROOF. x" = xm+1 f(x) = X xf(x) = xm+2 f(x)). Continuing we get X" = xzm
(f(x))m which implies that e = xm(f(x))m is an idempotent.
LEMMA 2. 1If a ring R satisifes the polynomial identity X" = xm+lf(x), then the

Jacobson radical J of R is nil.

PROOF. Let x € J. By Lemma 1, xm(f(x))m is an idempotent element in J. So
xm(f(x))m = 0 and since x" = xzm(f(x))m (Lemma 1), we obtain x" =0 for every x
in J. So H 1is nil.

In |1), it is proved that a finite I-ring is Boolean. In the following two
theorems we study the analogous case for N-rings. Indeed, we prove that an N-ring R
is nil of R 1is Artinian or if R satisfies the polynomial identity X" = xm+1f(x).

THEOREM 1. Let R be an Artinian N-ring. Then R is nilpotent.

PROOF. Let J be the Jacobson radical of R. Suppose J # R, then R/J (being

semisimple Artinian) has an identity. So R/J 1is an N-ring with identity (Remark 1).

Thus R/J = {0}, by Remark 2. This contradicts our assumption that J # R. So
R = J, and hence R 1is nilpotent, since J 1is nilpotent in an Artinian ring.
THEOREM 2. Let R be an N-ring satisfying the polynomial identity X" = xm+1f(x)

(m is a positive and f(x) 1is a polynomial with integer coefficients). Then R is
nil.
PROOF. By Lemma 2, the Jacobson radical J of R 1is nil. R/J being semisimple

is semiprime, and hence R/J 1is a subdirect product of prime rings Ra' Each non-

zero prime ring Ra satisfies the identity X" = xm+1

f(x), and hence by Theorem1.4.2
of [2], Ra has a nontrivial center. Let 4 # 0 be a central element of Ra.

By Lemma 1, e, = c:(f(ca))m is an idempotent of Ra’ and hence e, is a central

2 = cim(f(ca))m = 0 which contradicts the
fact that Cq is a nonzero central element of 2 prime ring and cannot be a zero

divisor by Lemma 2.1.3 of [3]. But e R&e - Xa) =0 for all Xy € Ra' So

idempotent of R . e # 0, otherwise ¢

X
a o o

X =x =0 for all x in R, and hence R has an identity element. So R

a “a a a (v] (1 a
is an N-ring (Remark 1) with identity. So R = 0 (Remark 2). This implies that

a
R/J = {0}, and R =J 1is nil.

We now give an example to show that Theorem 1 need not be true if R is not

e

Artinian and Theorem 2 need not be true if R does not satisfy the identity
X" = xm+lf(x). The ring used in the following example was used in [1] to show that
an I-ring need not be Boolean.

EXAMPLE 1. Let D be any ring with identity, and let R be the ring of all
oxo matrices over D in which at most a finite number of entries are nonzero. Let

x be any element of R. Then, for some positive integer n and some nxn matrix
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A over D we have

A 0
X = [ ] ; A 1is nxn, O's are zero matrices.
(o] 0

Let 0] ; O's are zero matrices.
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It is easy to verify that S and T are nilpotent elements, and X = ST. Thus R

1 0

is an N-ring which is not nil since [ ] is not nilpotent. This example shows

0 0
that we cannot drop the hypothesis that R is Artinian in Theorem 1 or the hypothesis
that R satisfies the identity - xm+lf(x) in Theorem 2.

Next we study the structure of certain NI-rings. The following example shows that

an NI-ring need not be neither Boolean nor nil.

0o 0 1 0 0o 1 1 1
Example 2. Let R = s N B
0 0 1 0 0 1 1 1

over GF(2). Trivially, R is a finite NI-ring which is neither Boolean nor nil.

In example 2 above, the NI-ring R has the property that the set N of nilpotent
elements forms an ideal of R and R/N is Boolean. This motivates the study in the
next theorem. Indeed, we prove that an NI-ring will have this property if the nil-
potent elements of R commute.

THEOREM 3. Let R be an NI-ring such that the set N of nilpotent elements of

R is commutative. Then N 1is an ideal of R and R/N is Boolean.

PROOF. If R has no nonzero idempotents, then R is multiplicatively generated
by nilpotents only. So R =N is nil since N 1is commutative, and the theorem
follows. So we may assume that R has nonzero idempotents. Let e be any nonzero
idempotent of R and let x be any element of R. Clearly, (ex - exe) € N and

(xe - exe) € N. Now, since N is commutative
e(ex - exe) (xe - exe) = e(xe - exe) (ex - exe) = 0.

This implies that ex2 - exexe = 0, and hence
(1) (exe)? = exe.
Using induction, (1) implies that

2" 2"
(2) (exe) = ex e for all positive integers n.
Let a € N. Then using (2) we obtain

(3) eae € N for every a € N.

Since N 1is commutative, N is a subring of R. So using (3) and the fact that

ea - eae € N and ae - eae € N we get
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(4) ea €N, ae€ N for every a € N and every idempotent e.

Now since R is multiplicatively generated by idempotents and nilpotnets and since N

is commutative, (4) implies that
(5) N is an ideal of R.

Let x = x + N be any nonzero element of R/N. Since R 1is an NI-ring, (5) implies
that either x € N or x = e ey oo e for some idempotent elements

el, ez, cees en. So

X = e

1 e

cee € + N = (e, +N) (e2 + N)...(en + N),

2 1

and hence

(6) R/N is an I-ring.

If e is any idempotent element of R/N, then (ex - exe) and (xe - exe) are
nilpotent elements of R/N. But R/N has no nonzero nilpotent elements. Thus

ex = exe = xe for all x in R/N and hence
(7) The idempotents of R/N are central.

Now, by (6) and (7), R/N is I-ring with central idempotent elements, and hence R/N
is Boolean. This completes the proof of Theorem 3.

We now give an example to show that Theorem 3 need not be true if the nilpotents
of R do not commute.

EXAMPLE 3. Let R be the ring of Example 1. Then R, being an N-ring, is an
NI-ring. Clearly, the set N of nilpotent elements of R 1is not an ideal of R.
This example shows that we cannot drop the hypothesis that the nilpotent commute in

Theorem 3.
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