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ABSTRACT. Let Ap’ where p 1is a positive integer, denote the class of functions

£(z) = 2P + I a2z" which are anmalytic in U = {z: |z| < 1}.
n=p+l 1

For 0<A<1, Jaf < %, 0 < B <p, let FA(G,B,p) denote the class of func-
tions f(z) ¢ Ap which satisfy the condition

H(f(z))-1

H—(ml < X for zeU,
iazf'(z)
£(z)
__e - Bcos a-ip sina
where H(f(2)) (p-F)cosa

Also let CA(b,p), where p is a positive integer, 0<XA<1l,and b # 0 is
any complex number, denote the class of functions g(z) € Ap which satisfy the condi-
tion

Iﬂiﬂiizl:ll < A for

H(g(2))+1 zeU, where

_ 1— ZE"(Z)
H(g(z)) 1+ pb(l + g|(z) p).
In this paper we obtain sharp coefficient estimates for the above mentioned

classes.
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1. TINTRODUCTION.
Let Ap, where p 1is a positive integer, denote the class of functions
f(z) = 2P+ T az" which are analytic in U = {z: |z|< 1}. We use @, 0< X<,
n=p+l 0
to denote the class of analytic functions w(z) in U satisfying the conditions
w(0) =0 and |w(z)| <A, O<ac< 1.
Padmanabhan introduced the class of starlike functions of bounded order A»
0 <x< 1, defined as follows [11]:
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DEFINITION 1. A function feAl and satisfying

z2f'(z) _ 1
f(z)
2f' (z)
f(z)

for a given A, 0 < A <1, Izl < 1 1is said to be starlike of bounded order A in

<A (1.1)

+ 1

Izi < 1 and this class is denoted S(A), the class of all such functions for a given
A.

Let F(a,B,p) (Ja] < %, 0 < B < p) denote the class of functions f(z) € Ap and

for which there exists a p = p(f) such that

1
Re {ef® 2L (2) 1, g (e (1.2)
f(z)
and
2w zf'(z) _ _ io
6 Re {—??;7— } do = 21p for z=re ,p <r<1l. (1.3)

Functions in F(a,B,p) are called p-valent a-spirallike functions of order 8. The
class F(a,B,p) was introduced by Patil and Thakare [12].
In this paper we use a method of Clunie [3] to obtain sharp bounds for the coef-

ficients of functions FA (a,B,p) and CA (b,p) , where p 1is a positive integer,
0<xs1, |a] < % , 0< B < p, and b 1is any complex number, where FA (a,B,p) and
CA (b,p) are defined as follows:

DEFINITION 2. For O < A <1, Ial < % , and 0 < B < p, let Fy (a,B,p) denote
the class of functions f(z) € Ap which satisfy the condition

H(f(z))-1

o UM (1.4
for z € U, where
ia zf'(z)
——=2 - B cosa - ip sinco
H(f(2)) = £(z) ) (1.5)

(p-B)cosa
DEFINITION 3. For p 1is a positive integer, 0 < A <1, and b # 0 is any com-
plex number, let CA(p,b) denote the class of functions g(z) € Ap which satisfy the

condition

H(g(z))-1

lEgan+t! <A (1.6)
for z € U,
where H(g(2)) = 1 + % a+ Eg,—%;— -p. (1.7)

We note that by giving specific values to A, a, B, p and b, we obtain the
following important subclasses studied by various authors in earlier papers:

(1) FI(O,O,I) = s* and Cl(l,l) = C , are respectively the well-known classes

of starlike functions and convex functions, Fl(O,B,l) =S and Cl(l-B,l) =C

8 B’
0 < B <1, are respectively the classes of starlike functions of order B and con-

vex functions of order B introduced by Robertson [14], FA(O,O,I) = S(A) and

C,(1,1) = C(A), is the class of functions g for which =zg'(z) € S(}).
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(2) Fl(a,O,l) = s% and Cl(cos a e_la,l) = c%, la] < %, are respectively the

v .V
class of a-spirallike functions introduced by Spacek [18] and the class of functions

g for which 2zg'(z) is o-spirallike introduced by Robertson [15], Fl(a,B,l) = Sg
and Cl[(l-B) cos a e_la,ll = Cg, |a| < %, 0 < B <1, are respectively the class of

a~-spirallike functions of order B introduced by Libera [8] and the class of'func—
tions g for which 2zg'(z) is oa-spirallike of order B by Chichra [2] and Sizuk

[17].

(3) Cl(b,l) = C(b) 1is the class of functions g € A, satisfying

1

"
Re{l + 4 287(2)y ¢
b g'(2)
introduced by Wiatrowski [19] and studied by [9] and [10].

(4) Fj(0,0,p) = S(p), € (L,p) = C(p), Fy(0,8,p) =5 B(p) and C[(1-5), p]

= CB(p), 0 < B < p, are respectively the classes of p-valent starlike functions,

p-valent convex functions, p-valent starlike functions of. order B and p-valent con-

vex functions of order B considered by Goodman [6] and the class SB(p) investi-
gated by Goluzina [5].
o -ia m
(5) Fl(a,O,p) = S (p) and Cl(cos ae »DP) > Ial < 3, are respectively the
class of p-valent a-spirallike functions and the class of p-valent functions g € Ap

satisfying

Re %1 + EgTéf%) >0, z¢eU

\l
i.e., the class of p-valent functions g for which Eﬁsiél is p-valent a-spirallike.
B -ia L
(6) Fl(a,B,p) = F(a,B,p) and Cl[(l - E) cosa e s> Pls lal <7 0<8<p, is

1
the class of p-valent functions g for which Eﬁsiil is p-valent a-spirallike of

order 8.
(7) Cl(b,p), is the class of functions g ¢ Ap satisfying
Re {p + l(l + 55;151 -p)l >0, zeU,
b g' (2)
the class C(b,p) was introduced by the author [1].
(8) FA(a,B,l) = Fx(a,B), is the class of functions investigated by Gopalakrishna

and Umarani [7].

9) Cl[(l - g)cos o ela, rl, ]a] < %, 0 < B < p, is the class of p-valent func-

1)
tions g(z) for which EEELEL € Fx(a,B,p).

We state the following lemma that is needed in our investigation.
LEMMA 1[11]. Let f(z) be analytic for |z| < 1 and let £(0) = 0. Then
f(z) € S{(A) if and only if

= z $(t)
f(z) = z exp [-2 6 IEETION dt],

where ¢(z) is analytic and satisfies |¢(z)| <A, 0<Ac<1, for |z| < 1.
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In the rest of the paper we always assume that p 1is a positive integer,
0<x<1, |af < %, 0 <B<p, and b#0 1is any complex number.
2. REPRESENTATION FORMULAS FOR THE CLASS FA(a,B,P).

LEMMA 2. f(z) € Fx(a,B,p) if and only if for z € U

i 3§%§§l = cosa {E:§252§%¥§51} + ip sina, (2.1)
w € QA'
PROOF. If f£(z) 1is given by (2.1), then
eiu 2f'(z) - B cos a - ip sin
H(£(2))= £(z)
(p-B)cosa
- 1-w(z)
1+w(z)
H(f(z)) -1 _ _
so that m = -w(z)

and so (1.4) holds. Thus f£(z) € FA(a,B,p).

Conversely, if £(z) € Fx(u,B,p), then (1.4) holds.

Defining w(z) = —%i%%%%%%% we obtain (2.1) and the proof is complete .
LEMMA 3. f(z) € FA(a,B,p) if and only if
£ (z)7P
£(z) = z"[ 1 z] (2.2)

B8
for some f1 € FA(a,p,l).

fl(z) P

Z P - $ n 1
PROOF. Let f(z) = z" [ ] for fl(z) z + n§2 ez € Fx(u,p,l), z € U.
By direct computation, we obtain z£.'(2)
io zf'(z) 8 a - ip sin a i —?lzzj— - =cosa - isina
—??;7— cos p sin . 1 P
(p-B)cos a

(1- g) cos o

and the result follows from (1.4).
In a similar way we can prove the following lemma :
LEMMA 4. f(z) € FA(a,B,p) if and only if

fz(z) (p-B) cosa e_ia
£(2) = 2P |-= (2.3)

for some f2 e S(A).

An immediate consequence of lemmas 1 and 4 is
THEOREM 1. f(z) € Fx(a,B,p) if and only if

£() = 2P expl-2(p-B)cosae™® 1% BN ae) (2.4)

where ¢(z) 1is analytic and satisfies |¢(z)| <A, 0<Ac<1, for Izl < 1.
3. COEFFICIENT ESTIMATES FOR THE CLASS FA(G,B:P).

LEMMA 5. 1If integers p and m are greater than zero, 0 < B8 < p and |a| < %,
then
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mﬁl AZIZ(QjB)cosae_ia +j 2 - cos?a
j=o (G+1)2 w?

{4 A2(p-8)?2

+ 7T D2(2p-2 8402 + A%k tan? a - k2secZa]

kﬁl A2|2(p-B)cos a e-ia+jl2}
j=0 (j+1)?

51

(3.1)

PROOF. We prove the lemma by induction on m . For m =1, (3.1) is easily

verified directly.

Next suppose that (3.1) is true for m = g-l. We have

2 -
CO5-C{4A2 (p-8) 2+ ggi [(A2(2p - 28+k)2 + A2k2tanZa
. z

kﬁl A2|2(p-B)cos a e-iafi|2 }

k2 sec?a].
] j=0 (3+1)2

2 -
- cosza (422(p-B)2 + qu [A2(2p-2B+k)?
q k=1

- -ia
+ 22k2 tanZa - k? sec?a ] Fnl A2|2(p=B)cos a e +j|?
i= (+1)2

+ [A2(2p-2B+q-1)2 + A2(q-1)? tanZa -

= -ia .
(q-1)2sec?a] qHZ A2|2(p-B)cos a e "+j|2? )
370 (3+1)?2

. 972 22|2(p-B)cos a e Mj[2

j=0 (G+1)?
{A2(2p-28tgfl)2cosza + }.Z(q—l)2 sinza}
2
q

- ?ﬁl A2|2(p-8)cos [*1 e_ia+j|2
=0 (G+1)?

Thus (3.1) holds for m=q which proves lemma 5.

THEOREM 2. If f(z) = zP anzne F,(a,8,p), then

M n£p+l

n‘ﬁP+1) A|2(p-B)cos a e-ia+k|
k=0

|an| = k+1

for n > p+l and these bounds are sharp for all admissible a,B and

PROOF. As f ¢ FA(a,B,p), from Lemma 2, we have

{eia sec o zf'(z) + (p-2B-ip tan a)f(z)} w(z)

ia

= (p+ip tan a)f(z) - e sec azf'(z)

for z € U, we ﬂx . Hence we have

- . K
k£0 [{(p+k) oi0 seca + (p-2B-ip tana)} apsz 1 w(z)

k

= k§0 [p + ip tan o —(p+k)eiu seca]ap+kz
k+1
b z .

where a =1 d = b
P and w(@) = kg by

(3.2)

A for each n.

(3.3)
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Equating coefficients of 2z on both sides of (3.3), we obtain
mty fa 28-1 } b
o (ptk)e  seca + (p-2B-ip tan a) ap+k -k

= {p+ip tan a - (ptm)el® secu}apm;

which shows that ap+m on right hand side depends only on

ap, ap+1,... ’ ap+(m_1)

of left-hand side. Hence we can write

m-1

k§0 [{(p+k)eia seca + (p-2B-ip tan a)} ap+kzk] w(z)

_m . ia kK, « k
= k§0 [p + ip tan a-(ptk)e™ sec o] ap+k z + k£m+l Akz (3.4)
for m = 1,2,3... and a proper choice of Ak (k > 0).

Denoting the right member of (3.4) by G(z) and the factor multiplying w(z) in the
left member of (3.4) by F(z), (3.4) assmes the form

G(z) = F(z) w(z) for =z e U.
Since Iw(z)l < A for z e U this yields for 0 < r < 1,

A2

1 2m 16,12 A
(f) |G(re™) | do < o

1 YA 10,2
I 6 |F(re™”) |2 46,
hence, using the definitions of G(z) and F(z)

m i 2k
k§0 lp+ip tan a - (p+k) e e secal2 Iap+k|2 r

° 2 _2k
tolp I8 12T 2

Iz 2k

m=1
Az{kgo |(p+k)eiu seca + (p-2B8-ip tan a)|2 |a r ). (3.5)

ptk
Setting r - 1 in (3.5), the inequality (3.5) may be written as

m-1
kéo {A2 I(p+k)eia seca + (p-2B-ip tan a)l2 -

|p +ip tan o - (p+k)eia sec a|2} |a_, |2

ptk

> |p+ip tan a - (p+m)eia sec al? |ap |2 . (3.6)

+m
Simplification of (3.6) leads to

2 m-1
ol < 235 - 2y (P(2p-28+02 +
m
2 2 2y _ 12 2 2
A% k? tana - k? sec?a} lap+k| . 3.7)

Replacing p+m by n in (3.7), we are led to

2 n-(p+1)
la_|? < %‘%2 . k=g {22 (2p-28+k)2 +
n-p

A22k? tanZo - k? sec2a} |ap+kl2 (3.8)

where n > p + 1.
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For n=p + 1, (3.8) reduces to
2 —RY2 2 2
|ap+1| < 4(p-B) A“ cos‘ a
or

Iap_Hl < 2(p-B) A cos a (3.9)

which is equivalent to (3.2).
To establish (3.2) for n > p+l, we will apply induction argument.

Fix n, n > p + 2, and suppose (3.2) holds for k = 1,2,..., n-(p+1). Then

COSZG

2 2(5-R)2
Ianl < z{ax (p-8)2 +

(n-p)
n-(p+1)

o (22 (2p-28+k)2 + A2k? tan? a - k? secZal x

- 2 _ ~-ia, . 2

ggé A2|2(p-B)cos a e +1] } (3.10)
) (G+1)?

Thus from (3.8), (3.10) and Lemma 5 with m = n - p, we obtain

la |2 < “Tép+1) 22| 2(p-B)cosa e 1%+4|2 .
moo 3 (+1)2
This completes the proof of Theorem 2.
Equality holds in (3.2) for n 2 P + 1 for the function f(2) € Ap defined by
(2.1) with w(z) = Az.
REMARK ON THEOREM 2. For various choices of the parameters, known results can be
regained: [71, [8], [121, (131, [14], [16) [20].

In a similar way we can prove the following: Lemma 6, 7, and Theorem 3 for

functions in CA(b,p).
4, REPRESENTATION FORMULAS FOR THE CLASS Cx(b,p)

LEMMA 6. g(z) € Cx(b,p) if and only if for z e U

; zg"(z) _ (p-1)+(p-2pb-1)w(z)
(i) e (z) " T+ (z) s WE Qx. (4.1)
- (z)
(1) g'(2) = pPTt (ELT PP 4.2)
for some g € S(A).
(111) g'(2) = pzP™} expl-2pb . el acl, 4.3)

where ¢(z) is analytic and satisfies |¢(z)| <A, 0<A<1, for Iz[ < 1.
5. COEFFICIENT ESTIMATES FOR THE CLASS CA(b,p).
LEMMA 7. 1If integers p and m are greater than zero; b # 0 and complex,
then
w1 A2]2pb+j[2 _ 1
! == {4 p?[b|%2 -+ A% +
3=0 G2z w2 P o]

m-1 -1 2 .2
Iy (2(2-1) +4p2[b|2 A2 + 4pk Re(b}A2) kb A2[2pbHi[® ) G-
j=o0 (3+1)?



54 M.K. AOUF

©

THEOREM 3. If g(z) = 2P + T d2z" e C,(b,p), then

n=p+l 1
-(p+l) )
p . n(pt 2pb+k
<o ado (et D) (5.2)

for n > p+l. Equality holds in (5.2) for the function g(z) ¢ AP defined by (4.1)

with w(z) = Az.
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