Internat. J. Math. & Math Sci. 27
VOL. 11 NO. 1 (1988) 27-36

SUMMABILITY METHODS BASED ON
THE RIEMANN ZETA FUNCTION

LARRY K. CHU
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

STATE UNIVERSITY OF NORTH DAKOTA - MINOT
MINOT, ND 58701

(Received September 12, 1986)

ABSTRACT. This paper is a study of summability methods that are based on the Riemann Zeta function. A
limitation theorem is proved which gives a necessary condition for a sequence x to be zeta summable. A
zeta summability matrix Z; associated with a real sequence t is introduced; a necessary and sufficient
condition on the sequence t such that Z; maps |4 to l4 is established. Results comparing the strength of

the zeta method to that of well-known summability methods are also investigated.
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1. INTRODUCTION.
Recall that the Riemann zetafunctionis givenby  ¢(s) = Y7, (1/k") for s>1 (Titschmarch [1]).

A number sequence is said to be zeta summable to L (or {-~summable to L) provided that
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The zeta method is a "sequence-to-function” summability method whose domain consists of those
sequence x such that the Dirichlet's series Y., (x;/k®) s convergentfors > 1.

In the second section it is shown that the zeta summability method is regular and totally regular
(preserves finite and infinite limits). A limitation theorem is proved which gives a necessary condition for a
sequence X to be zeta summable. In section 3 we introduce a zeta summability matrix Z; associated with a
real sequence t; a necessary and sufficient condition on the sequence t such that Zy maps |y into 14 is
established. The final section contains results comparing the strength of the zeta method to that of
well-known summability methods. For example, the zeta method is stronger than the Cesaro method of
order 1 but does not include the Cesdro method of order 2; the zeta method does not include and is not
included in the Euler-Knopp method of order rfor 0 < r < 1.

2. BASIC THEOREMS
THEOREM 1. The {-summability method is totally regular.

Proot. First let x be a sequence satisfying limy xy = L, and suppose € > 0. Then choose N4 so that

"N v > .
k >Ny implies | x - L | <€ /2. Now for any positive integerk and s >1 we see that Viohtixe w/R) s
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boundedby Yo'y Ixc- Li =M. Since Y%, 1/k = o ,wecanchooseNa >Ny sothat
\::g] 1/k > (2M/¢) + | - Now choose & such that 0 <8 < log [1 + (1/Np)Jlog Np. Then for eachk <Np, we
have

Ko<l leg [1-+{1/Np)! /log Ny < 1+ “/Nz) :

andif1<s<1+9%
(1/k) - (1/K°) < (K- 1)/k* < kP~ 1 < 1/N,.

Summing from k = 1 to No, we obtain
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Now assume x is a real number sequence which diverges to . Then for each number M > 0 there
exists a positive interger N such that x, > M + 1 for all k> N. Suppose s > 1 and consider
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Since {(s) >~ ass — 1+, we see that if s is sufficiently close to 1 on the right, then

L& *_kﬂl <l:
ds) o UK '

this implies that
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Since M > 0 was chosen arbitrarily, we conclude that
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A previous definition of "zeta summability” was given in Diaconis [2]. In that paper the bounded
sequence x is said to be zeta summable to L if

»

lim 4+ (s-1)

=1L.
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This is equivalent to the difinition of the zeta method introduced in this paper. There equivalence is an

immediate consequence of the fact that limg_, 1, {(s) (s - 1) = 1.

S(a)
(Powell et al [3]).

Recall that a Stoltz domain of angle , where 0 < a < =® /2, is a complex number set of the form

{w: | Arg(w-1)| <a,and |w|<1}.

S*a) = {w:

We shall use a variant of this concept, which we shall call a "reflected Stoltz domain of angle o "

| Arg(w-1)| <a and Ryw)>1} .
This concept is now used to extend the zeta method to one using a complex-valued function limit, and we
establish the regularity of this extension.

THEOREM 2. Let S *(a) be a reflected Stoltz domain of angle o; if the sequence x converges to L
then

X Xk
bm % —‘,) =1L.
w—1,veS*a) §(“’) k=1 k"

The proof of Theorem 2 that we shall give needs the following preliminary result.

LEMMA 1. Forw= o +i t,we S*(a) , and w sufficiently close to 1, we have

T I
I;‘W)l < k" Séisec a .

Proof. Since {(w) can be expanded in the form (w - 1)'1 + P(w - 1), where P(w - 1) is a power series
in (w - 1), (Hardy [4], p. 333), we have

29
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1 ¢ 1 ld9l
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Since the limit value (w - 1| /{ o - 1| < sec o for w £S*(av), this proves the assertion.
Now we prove Theorem 2.

Proof (of Theorem 2). Let € > 0. Since x convergestoL, wecanchooseNy > |xk-L|<(e/4)
N
cosa for k>Nq. Let Y, 1 | xx - L| = M. Since {w) o asw —1, we have 1/{(w) < e/2M for w
sufficiently close to 1.

Now forw € S*(a), we have

LS X 1 &1
B S I e L
dw) 2 kY ‘ | ew) ] kgl Fk™ | I I
—_1 ;; %ol + % I
kK~ Za
[dw) | [kZ) k¥ >N, kY
M 1 ¢ b
©—cosa Y,
] T T B

< ; + % (cos a) 2 sec a
= ¢
Next we prove a limitation theorem which asserts that the {-summability method cannot sum a
sequence that diverges too rapidly.
THEOREM 3. If a complex number sequence x is {-summable, then for each s > 1, xp = o(nS).
Moreover, the term o(nS) is the best possible in the sense that the conclusion fails if nS is replaced by any

real sequence to such that t/nS decreases to zero.

Proof. For x-to be {-summable, x must be in the domain of the {-summability method. Therefore
Y2, (x,/n°)  converges for all s > 1, which implies that limp(xp/nS) = 0. If nS is replaced by t,,, where
tn/nS decreased to 0, then we assert that it will not be true that xp, = o(tp,) whenever x is {-summable. This
is equivalent to showing that there is a sequence x such that x is {-summable and x, # o(t). Define the
sequence x by xp, = (-1)M+1t,,, so that
o0

(e o)
AN “ Z 1.+1 &L
n= l n’ p=1

This is a convergent alternating series, and its (positive) sum is bounded by its first term t4.
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Hence,

i.e., x is {-summable to 0. But x, # o(ty) because for each n, | xpftn | = 1.

3. ZETA SUMMABILITY MATRICES
Definition. Let t be a sequence of real numbers such that t(n) > 1 for every n and limpt(n) = 1.

Then the zeta matrix Z; = [z associated with the sequence t is defined by

Zyk for n,k = 1,2,3,....

-
B d(t{n))kH®)

In this section we make use of two well-known theorems in summability theory, which we shall
subsequently cite by name only; they are Silverman-Toeplitz Theorem ([S)and [6]) and the Knopp-Lorentz
Theorem [7]. ltis an easy calculation to show that Z satisfies the conditious of the Silverman-Toeplitz

Theorem for regularity. Moreover, Z; is totally regular because all of its entries are positive real numbers

([3] p. 35). We summarize these observations in the following theorem.
THEOREM 4. The zeta matrix Z; associated with the sequence t is totally regular.

The next result is a characterization of those sequences t for which Z; is an /- matrix, i.e., Zy maps /y
into /y.

THEOREM 5. The matrix Zy is an /-/ matrix if andonly # t - lisin /4.

Proof. Since each row sequence of the matrix Z; is decreasing, the set of the sums of column
sequences of the matrix Z; is bounded by the sum of its first column entries. Therefore by the

Knopp-Lorentz Theorem, it is enough to show that the first column sum is finite whenever Y,
(t(n) - 1) is convergent. This is a consequence of the inequality

oC
1 o
_— < 2 (t(n) -1),
L, Ty < T
which follows immediately from the fact that fors > 1,

s-1<1

s T ds)
<s-1 (*)
Hence Zy is an /-/ matrix.
Conversely, assume Zy maps /4 to /4. Since t(n) > 1 and limp, t(n) = 1 for every n, we can choose a

positive integer N suchthat 0 <t(n) - 1 <1forn > N. Supposet- 1is notin /y; then

) = 5 ()

n ;JN 2
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Now \“'v , € (t(n))) diverges to infinity because of the inequality 1/ { (t (n))) = (1 - 1/t (n)) asin (*).

an—

Therefore, by the Knopp-Lorentz Theorem, Z; is not an I/ matrix. This completes the proof of the

theorem.

4. INCLUSION THEOREMS.
In this section we compare the strength of the zeta method and the zeta matrix methods to several

well-known summability methods. Throughout this section C, denotes the Cesaro summability matrix of

order a. and E; the Euler-Knopp summability matrix of order r.
LEMMA 2. If x is a sequence that is C4-summable, then x is in the domain of the {-summability

method, and hence, x is in the domain of every Z; method.

Proof. Assume that x is Cy-summable to L: limp, (x4 +. .. +xp)/ n = L. To get the conclusion it is
enough to show that the abscissa of convergence % of the Direchlet series Y2, xp/nS is less than or

equal to 1, where 9, is given by

log

u |
\ .
¥ x|
I k=1 |
o, = lim su -

° P log n

(Hardy et al [8] or Titschmarch [9]). Since x is cq-summable to L, there exists a positive integer N such that
ifn=N, then

o

Y %

K1 H

L Iy
n

This impliesthat | Y0 x| < o(|[L]| + 1) se

Y x| <log (L] +1)].

Therefore
n
log [ Y xy
. k=1
o, = lim sup
100 log n
log n (L] +1
< lim sup [ _g (1L —-)i
B0 log n

=1

THEOREM 6. The Z; method includes the C4 method.
Proof. This inclusion is equivalent to the regularity of the matrix 2101'1, which can be verified by

direct calculation using the Silverman-Toeplitz Theorem.
The following example shows that the C4 method does not include the Z; method.
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EXAMPLE.
et x = {(- 1)k} ; then

. ™ (—l)kk
)y = Y
R TSI
I <R Ty
= 1) 2, W
Since
1< ;E‘ i"”k

=2 ’kn,(n) -1

<0 for t)>1

and limp, {(t(n)) = <, it is easy to see that imp(Zx)p = 0. On the other hand, we have

1 & \l\'k
=Y (-1
Dy

(Cyxy

1 ,if uis even
2

A if nis odd.
2

Thus limp(c1x)n, does not exist, so x is not C4-summable.
By a "continuous parameter sequence-to-function transformation”, we mean a summablility
method F that is determined as follows by a fuction sequence {fy(z)} v2, - foragiven sequence x form

the function ©
Fz)= ¥ fila)x; (=)
k=1

if limz _, 4 Fx(2) =L, then we say that "x is F-summable to L". For a given function sequence {f(z)} Pl

and a given number sequence t, we can also form an associated matrix F, which is given by

Fy[nk] = fi(t(n)) .

The next lemma, which will be used to compare the C4 method and the { method, is a comparision of the
method if and the associated matrix method Fy.

LEMMA 3. Let F be a continuous parameter sequence-to-function transformation as in (**) and
define the sequence sets

Sp o= (x o lim Folz) exists) .
7o
Sp, = {x : Fix is convergent }
and

T = {t: lim(n) = a} ;
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Proof. We show that each of Spand (S, contains the other. Since Fy includes F for tin T, we

have

Sr € ) S, -
teT

To prove the reverse inclusion, we consider a sequence x which is not in Sg. It follows that lim, _, 4Fy(z)

does not exist. By the sequential criterion for function limits (Almsted [10], p. 73), there is a sequence t\
in T such that limp(Fyx)p, does not exist. This implies that x is notinthe set Sk, . Hence x is not in the
set (i erSr,
THEOREM 7. The {-summability method is stronger than the C4 method.
Proof. By Lemma 3, we have S¢ = {lerS,, . Since the Zy method includes the C4 method for all t
inT,we have Sc, = { Vi Sz, = S¢ . Now if x is a sequence that is C4-summable to L, then x is Z summable
to Lforalltin T. Therefore the sequential criterion for function limits ensures that x is {-summabile to L.

Hence, the { method includes the C4 method. It is easy to see that the C4 method does not include the

{ method because C1 method does not include the Zy method.

As a consequence of Theorem 6, we can infer that Z; includes any method that is included by Cy.
For example, Z; includes the divisor method Dy for r > 0. (Fridy [11]).

Let Ha denote the Holder method of order 2. By arguing as in the proof of Theorem 6, we can

prove
THEOREM 8. If the sequence x is Ho-summable to L and x is in the domain of the Z; method,

then x is Zy summable to L.
COROLLARY. If the sequence x is Hy-summabile to L and x is in the domain of the {-summability

method, then x is {-summable to L.

The conclusion of the preceding Corollary does not hold if x is not in the domain of the { method.

This is shown by the following example.
EXAMPLE. Let x be the sequence defined by

o] e

(-1)*Kk?, if n=2k, k=1.2,...
X, == N

(D% 'KT if n=2k-1, k=1,2,... ,

If x <3/2, then the series 37, (xy/nS) is divergent because its nth term does not approach 0. Therefore

Zan==1
x is not in the domain of the { method, and hence, x is not {-summable. Now we show that x is
Ho-summable to zero. Since (C1x)ok-1 = (-1)K+1k3/2/(2k-1) and (C1x)2k = 0, we see that the (odd) partial

sums alternate in sign after k = 3; thus the partial sum is not greater than the last term, which is 0(k1/2).
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Therefore, upon dividing by 2k-1 to form C4(C{x)2k.1. we have

1
(Hox)s_y = [Tl-l—] o lkgl

=0 [I\Ll
=o(l).

which proves that x is Ho-summable to zero.

Since the Holder method of order 2 is equivalent to the Cesaro method of order 2 (Hardy [4], p.
103), we can immediately get the following theorem.
THEOREM 9. If x is a sequence which is Co-summabile to L and x is in the domain of the

summability method, then x is {~summable to L.
It is well known that for each number r satisfying 0 < r < 1 and any nonzero real number o, E,. By

using these facts, we have the following result.

THEOREM 10. The { method is not included in Epfor0 <r< 1.
The following example shows that the { method does not include E;forO0 <r < 1.

EXAMPLE. Given r between 0 and 1 choose € > 0 satisfyingr < 2/ (2 +€). Next define xk = (-1-e)k.
Then

(Ex), = 3 (k) o (erf b c1of
F=0

= [-1-)r + (1-1)]"
=2 + 1"

Since 0 <r < 2/(2 +¢), we have -1 < (-2-€)r + 1 < 1. This implies that

li;n(E,x)n = lim[(-2-()r + 1)

=0,

i.e., x is E-summable to 0. But x is not in the domain of the { method because the series

(-1-¢)*
v K

igs

k

is not convergent for any s, whence x is not in the domain of the { method.
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