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ABSTRACT. We show that any quartic extension of a local field of odd residue
characteristic must contain an intermediate field. A consequence of this is that
local fields of odd residue characteristic do not have extensions with Galois

group Ah or Sh . Counterexamples are given for even residue characteristic.
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1. INTRODUCTION.

In Section 2, a simple application of local class field theory proves the
existence of intermediate fields for quartic extensions of local fields with
odd residue characteristic. This immediately implies the non-existence of
Galois extensions of type Ah or Sh over such fields.

In Section 3, examples are given of Ah and Sh extensions of fields with
even residue characteristic, and of a quartic extension with no intermediate
field.

In Section 4, the results of Section 2 are used to show that the splitting
field of an irreducible quartic polynomial over a local field must have degree
4 or 8, provided the residue characteristic is odd. The implications of the
results of Section 2 and Section 3 for the theory of endoscopic groups are also
discussed.

I wish to thank Noriko Yui for helpful conversations about this work.

2. EXISTENCE OF INTERMEDIATE EXTENSIONS.

Let F Ybe a non-archimedean local field. Let o = op and p =p

respectively, be the ring of integers of F and its prime ideal.

F

THEOREM 2.1. Suppose the residue characteristic of F 1is odd, and E/F
is a quartic extension (i.e. [E:F] = 4). Then there must be an inter-

mediate field K, i.e. E>KoF, [E:K]=[K:F]=2.
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PROOF: If E/F is unramified, the result is obvious. If the ramifica-
tion index of E/F is e = 2 , then we must have f = 2 and, by Corollary
4 to Theorem 7 of chapter I, Section 4 of Weil [1], there is an unramified
quadratic intermediate field.

Now suppose e =4 , so f =1 . Any unit in E is of the form u+p,
with u € oX and p € Py - The norm of such an element is uh + p' , with

F
p' € Pg nF= Py - So by Hensel's Lemma the only units contained in the image

of NE/F
Corollary 1 to Theorem 4 of chapter XII, Section 3 of Weil [1] proves the

are fourth powers. In particular, NE/F is not surjective, so

theorem.
Translating this into the corresponding result on Galois groups, we

obtain the following equivalent formulation ...

THEOREM 2.2. If F has odd residue characteristic, there cannot be a

Galois extension E/F whose Galois group is isomorphic to Ah or Sb .

PROOF': Ah contains subgroups of index 4 (the cyclic group generated
by any 3-cycle), none of which is properly contained in any proper subgroup
(such a proper subgroup, if it existed, would be of order 6 and index 2,
hénce normal, hence would contain all 3-cycles, of which there are 8).

An Sh-extension of F would be an Ah—extension of a quadratic exten-

sion of F .

3. COUNTEREXAMPLE FOR RESIDUE CHARACTERISTIC 2.

Let F =4Q, and consider the Eisenstein polynomial &(X) = X -2X-2eF[X].
Let E be the splitting field of &(X) ; we shall show that Gal(E/F) = 5,
and GCal(E/K) = Ah , where K = Q2(/§) . In the process we shall find a

N

quartic extension L/F with no intermediate field.

Let o be a root of &(X) , and let L = F(a) .

LEMMA 3.1. The norm NL/F

PROOF: Notice that N(a+l) =-¢(-1) =1 , N(a-1) = &(1) = -3 . Also the
characteristic polynomial of a3 is ®3(X) = X]4 - 6X3 + 12X2 -8 -8, so
3 - = -
N(a~+1) = ®3(-1) =19 . If N = NL/F

be contained in the image of the norm map from some ramified quadratic

is surjective.

were not surjective, its image would

extension of F . Such an image contains exactly two of the four cosets of
o* modulo (ox)2 . We have just shown NL/F contains the three cosets con-
taining 1, -3, and 19.

In particular (by Corollary 1 to Theorem 4 of chapter XII, Section 3 of
Weil [1]), L/F is a quartic extension with no intermediate field.

Factoring the polynomial ®(X) over L , we see that ®&(X) = (X-0)¥(X),

where Y¥(X) = x3 + aX2 + a2x + (a3-2) .
PROPOSITION 3.2. Y¥(X) is irreducible over L .

PROOF: If all roots of ¥(X) were in L , then L =E would be
Galois, in contradiction of Lemma 3.1. The only other way for Y¥(X) to be

reducible would be for exactly one root, o' say, to be in L . In this case,
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F(a') would be a quartic extension of F contained in L , hence F(a')
=F(a) =L .

Let O € Gal(E/F) be such that o(a) =o' . Then o(F(a)) = F(a') , and
o' € F(a) implies that o(a') € F(a') = F(a) = L . Since o(a') 2z a', ola')
must equal the only other conjugate of o' in L , i.e. o(a') = o . Hence
the fixed field I° contains o + a' and oo , so (X-a)(X-a')
¥° - (o#a’)X + oo’ e L0[X] , which shows thet a is quadratic over L° .
So [L:LO] = [LO:F] = 2 . This also contradicts Lemma 3.1.

So E is the splitting field of Y¥(X) over L , and Gal(E/L) is
either A or S

3 3,
Now Y¥(X) = XK roxo +a’Xx+05-2=x3+ (2/3)a2X' + (20/27)a3 -2,
where X' = X + 2/3 . Hence the discriminant of VY¥(X) is

27[(20/27)a3-2)2..h((2/3)a2]3 =L.27 + (368/27)a6..80a3 = 4.9.3 mod*(1+4p )
Since h.9(l+hpL) S (Lx)2 , the discriminant of Y¥(X) is a square in

L if and only if 3 is.
LEMMA 3.3. The element 3 1is not a square in L .

PROOF: If 3 were a square, truncation of its square root would give
an element of the form x =1 +au-+ba2 +ca3 , with a , b, and c¢ each
equal to O or 1 and so that 3 -x2 € hpL . A trivial computation shows
that this is impossible.

Accordingly Gal(E/L) =S, , Gal(E/F) = s, » and Gal(E/K) = A, >

3
where K = F(/g)
4. APPLICATIONS.

1. The splitting field of a quartic polynomial over a local field is

severely constrained by the results of Section 2.

THEOREM L.1. Let F %be a local field with odd residue characteristic.
Let f£(X) € F[X] be an irreducible polynomial with deg f(X) =4 . Let E
be the splitting field of f(X) over F . Then [E:F] =14 or 8.

PROOF: Gal(E/F) is a subgroup of §), - But by Theorem 2.2 it cannot
be Sh or Ah . Since U4 |[E:F] , the only possibilities are 4 or 8 .

The polynomial &(X) of Section 3 gives a counterexample to this
result when the residue characteristic is 2 . Theorem 4.1 is clearly

equivalent to Theorem 2.2 (and hencé to Theorem 2.1).

2. If F is a local field, let G = SL(4,F) , and let T be an
elliptic torus in G . To T is associated a quartic extension E/F so
that the centralizer of T in GL(4,F) is isomorphic to EX , and T it-

RSN . X — X . =
self is isomorphic to El = {x e E7 NE/F(x) l} .

The theory of endoscopic groups (cf. Langlands [2], Shelstad [3])
associates to G and T some other groups, among which the most interesting
are constructed as follows: 1let E : K 3 F and let

¢' = {g € GL(2,K) : NK/F(detg) =1} . In G' it is possible to find an
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elliptic torus T' associated to the quadratic extension E/K , and there is
an isomorphism between T and T' . The hope is to simplify calculations
with orbital integrals over the G-conjugacy class of t € T by comparing them
with orbital integrals over the G'-conjugacy class of the corresponding

t' e T .

The example of Section 3 shows that this approach will not apply for
certain tori when the residue characteristic is 2 ; happily, for these tori
the ordinary orbital integrals are invariant under stable conjugacy, so the
problem does not arise. The results of Sections 2 encourage optimism in the

case of odd residue characteristic.
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