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, ABSTRACT. The main properties of the solution of the differential system of the mod-
el are obtained by qualitative integration. The integral curve is compared with the
solutions given by the two classical approximations to the problem: it is shown that
the steady-state approximation is to be preferred to the rapid equilibrium theory as
a general method and the conditions under which they will furnish accurate results

are discussed.
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1. INTRODUCTION.

From the expression of a gene to the storage of metabolic products, from the
respiration of a cell to the secretion of antibiotics, nearly all life processes are
controlled by enzymatic reactions, that is to say by chemical reactions catalyzed by
specific proteins called enzymes whose essential function is often to initiate a re-
action which, though thermodynamically possible, never occurs spontaneously: for ex-

ample, glucose left to itself does not ferment, but in the presence of a minute
amount of yeast or yeast extract, ethyl alcohol will be produced.

Thus the kinetic equations of enzymatic processes are of fundamental importance,

both for theoretical and practical reasons, but little is known about their solution.
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Let us consider the case of a bimolecular mechanism in which an enzyme E reacts re-

versibly with a substrate S; this results in the formation of an activated complex
*

ES” which can split reversibly into the enzyme E and the products of the reaction

which are globally denoted by P. In standard notations:

ky ko
E+S ES*—E+P ,
k_y k_

where the k's are velocity constants. Let e, s, x and p be the concentration of the
free (= unbound) enzyme, free substrate, activated complex and products of the reac-
tion respectively; then the differential equations of the kinetic system take the

form [1]

ds/dt = k_;x - kjes

dx/dt = kjes + k_jep - (k_; + ky)x
where t is the time, with the initial conditions: s(0) = So» x(0) = p(0) = 0.
Furthermore the equations of conservation read

e, = e + x

s, =8 +x+p (1.1)

There is no known close-form solution of this system, except in the case

k_2 = kl [2] and very early enzymologists looked for kinetic models easier to handle.

When k_, = 0, that is to say when the second process of the bimolecular scheme

2
is irreversible, one obtains, with the same initial conditions and the same equations

of conservation, the system

ds/dt

k_lx - kles

dx/dt = kles - (k_l + kz)x

(1.2)

This is a simplified model as there is now one parameter less to consider and the

overall velocity of the reaction, defined as the rate dp/dt of appearance of the

products, takes the particularly simple form

dp/dt = -(ds/dt + dx/dt) = kzx (1.3)

Again there is no known general solution of this non-linear system but through
the introduction of hypotheses endowed with a physical meaning one can get a manage-
able expression of the velocity: i) in a procedure due to Michaelis and Menten and
known as the equilibrium or rapid equilibrium theory, one assumes that the reaction
E+S ;::ES* always proceeds at equilibrium (and then ds/dt = 0); ii) in the steady-
state approximation due to Haldane and Briggs one assumes that the quantity of acti-
vated complex is constant (and then dx/dt = 0). In both cases the velocity is found

to be a simple function of s. As a matter of fact this is a general phenomenon and
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the rapid equilibrium and/or steady-state approximations allow one to obtain dp/dt as
an algebraic function of the parameters of the differential system even when the re-
action scheme is more complex than the simplified bimolecular process, for instance
when one considers the effect of inhibitors. Hence within the framework of these ap-
proximations the problem is reduced to the evaluation of certain parameters or groups
of parameters from a comparison of the theoretical expression of the velocity with
its experimental value in specified conditions. But the early methods proposed for
the exploitation of such data are rather unreliable [1] and the accurate and system-
atic study of (simplified) kinetic models could not be carried out before the devel-
opment of structure analysis [3,1]. In this method, specifically designed to handle
small size samples, one does not only calculate efficient and unbiased estimates of
the parameters of a given mathematical structure (here the expression of the veloc-
ity as a function of the various parameters of the differential system) but one also
computes a statistic which measures the overall degree of concordance between that
mathematical structure and the set of experimental data, taking into account the
physical nature of the experimental technique(s) used. It turns out in particular
that the degree of concordance obtained with hypothetical data in which one intro-
duces known errors is more or less what one would intuitively expect while this is

not always the case with experimental data which, as far as one can judge, are reli-

able and the goodness of fit may be too low. This of course suggests that the math-
ematical expression may not be quite correct and in turn calls for an examination of
the mathematical meaning of the two hypotheses ds/dt = 0 and dx/dt = O.

Thus the purpose of this paper is to describe how the rapid equilibrium and
steady-state approximations are related to the manifold of solutions of the differ-
ential system (1.2). In addition the stability of this system will be investigated:
this is a problem of importance because chains of enzymatic reactions are frequently
encountered in nature.

2. A QUALITATIVE STUDY OF SYSTEM (1.2).

Through substitution of the equation of conservation (1.1) into system (1.2),

the latter becomes

ds/dt = -k.e s + k .x + k,sx
o -1

L ! (2.1)
dx/dt = kleos - (k_l + kz)x - klsx
with the initial conditiomns
s(0) = E and x(0) =0 . (2.2)

The solution of physical interest is such that s,x > 0.
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THEOREM 2.1. The positive solution of problem (2.1)-(2.2) has the following prop-
erties:

i) s(t) is monotonically decreasing from s, to 0 as t increases from 0 to «;

ii) there exists a time T such that x(t) increases for t < T and decreases for

t > T, with lim x(t) = 0.

oo

PROOF. 1In the phase plane (s,x) system (2.1) satisfies

and

one

and

one

the

dx/ds = [kleos - (k_l + kz)x - klsx]/(—kleos +k_ x + klsx)

1
this equation is considered in the first quadrant. From
kleOS - (k__1 + k2)x - klsx =0

obtains the equation of the isocline of zero i, as

X = kleos/(klx + k_1 + k)

from

—kleos + k_lx + klsx =0

obtains the equation of the isocline of infinity i as

X = kleos/(kls + k-l)

By adding equations (2.4) and (2.6) one obtains x = 0, and the

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

substitution of

latter value into (2.4) yields s = 0. This shows that s = 0, x = 0 is the only

singular point of equation (2.3). Geometrically, it means that (0,0) is the only

point of intersection of the curves (2.5) and (2.7). Now, in the first quadrant the

isocline of zero (2.5) lies below the isocline of infinity (2.7) since the parameters

e, and k's are positive. Furthermore, as s increases, the graphs (2.5) and (2.7) in-

crease monotonically and approach asymptotically the horizontal line x

e,- Thus

(see Fig.l) the curves (2.5) and (2.7) split the first quadrant into three different

regions:
Rl: 0<x< kleos/(kls + k-l + kz) ,
RZ: kleos/(kls + k—l + kz) <x< kleos/(kls + k—l) R
R3: kleos/(kls + k_l) <x<w .
In R1 we have
kleos - (k_1 + kz)x - klsx >0 N
—kleos + k_lx + klsx <0 .

Hence ds/dt < 0 and dx/dt > 0. Therefore s = s(t) decreases and x

while in R2 we have

kleos - (k_1 + k2)x - klsx <0 N

- <
kleos + k_lx + klsx 0 N

x(t) increases,

which implies ds/dt < 0 and dx/dt < 0. Hence both s(t) and x(t) decrease in R,. Fi-
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nally, we have in R3

k s - (k_1 + kz)x - klsx <0 N

1%

-k

leos + k-lx + klsx >0 .

801

that is ds/dt > 0 and dx/dt < 0O, which shows that s(t) is increasing in R3 and x(t)

is decreasing.
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Let us consider that trajectory of the system (2.1) which starts from the point

(55,0) at t =

Rl. However it cannot remain in R; for all t > 0 as then x(t) would attain

0. For t > 0 this curve first moves upwards to the left in the region

a maximum

and decrease in Rl’ which is impossible. Therefore at some time T the trajectory must

cross the isocline of zero (2.5) and enter the region R2. In fact it remains in RZ

for all t > T, progressing to the left and downwards: it cannot cross back
since x(t) increases there and it cannot enter R3 either, because it would
cross the isocline of infinity (2.7) in the direction of increasing values
which is impossible. We conclude that s(t) monotonically decreases for all
that s(t) > 0 as t + o, Furthermore x(t) increases for t < T and decreases
with x(t) - 0 as t + o, Hence the zero solution of (2.1) is asymptotically

The function x(t) is null at the starting point and positive elsewhere

into Ry
have to

of s,

t >T and
for t > T,
stable.QED

in the

first quadrant. Then it follows from (1.3) that the overall velocity of the reaction

increases monotonically and that s(t) + x(t) decreases. Introducing the function

V(s,x) = s + x .
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we see that V(0,0) = 0 and V(s,x) > O elsewhere in the first quadrant. Moreover
dv[s(t),x(t)]/dt = d(s + x)/dt = -kzx <0
for x > 0. Hence V(s,x) can be considered as a Liapunov function to prove that the
solution of the problem (2.1)-(2.2) tends to 0 as t > «.
THEOREM 2.2 The integral curves of (2.1) can be divided in the phase plane in two
sets: the curves of one class enter the origin with the slope m;, and the curves of
the other with the slope m,, where m; and m, are the solutions of the equation
k_qm? + (k_y + kyp - kye)m = kje= 0 , (2.8)
PROOF. Introducing polar coordinates
s = rcosb x = rsind
and observing that

r~246/dt = sdx/dt - xds/dt

we obtain
r'zde/dt = H(s,x) + M(s,x}
with
H(s,x) = kleos2 - (k_l + ky - kleo)sx - k_lx2
and
M(s,x) = -kisx(s + x) .
2

As t » =, H(s,x) > 0 as r“ and M(s,x) *> 0 as r3. Therefore the behavior of 6 as
t > © is determined by H(s,x). The slope m of an integral curve as t > ® is the lim-
iting value of x/s. Hence it satisfies H = 0 and the latter equation can be written
in the form (2.8). It is easily verified that it has two real roots. The origin is a

nodal cri+tical point for the linear system corresponding to (2.1).

3. RAPID EQUILIBRIUM THEORY AND STEADY-STATE APPROXIMATION.

The preceding results furnish in particular a basis for the comparison of the
rapid equilibrium theory and the steady-state approximation regarding the accuracy
with which they can represent the enzymatic process. Moreover they shed some light on
the nature of these two models of a bimolecular reaction: the fundamental assumption

of the rapid equilibrium theory (ds/dt = 0) leads to the equation of the isocline of
infinity (2.7) while the fundamental assumption of the steady-state approximation

(dx/dt = 0) leads to the equation of the isocline of zero (2.5). Now when the reac-
tion has proceeded for a certain time > T the trajectory lies between these two iso-
clines, so that asymptotically - i.e. near the end of the reaction - there is little

reason to select one model over the other.
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A region of greater interest from the point of view adopted here is that domain
of the phase plane corresponding to the beginning of the reaction. While the sub-
strate concentration decreases from s, to nearly sy (see Fig.l) the integral curve
remains below the isocline of zero, and the latter lies below the isocline of infin-
ity. Thus in this region the steady-state approximation (which corresponds to the
isocline of zero) constitutes a better model than the rapid equilibrium theory
(which corresponds to the isocline of infinity).

Now the maximum discrepancies between these curves occur at s = s;. Thus the
deviations Ax at t = O between the integral curve and each of the isoclines consid-
ered is a measure of the error due to each approximation. In the case of the rapid
equilibrium theory this deviation is

Ax s,/ (kys, + k_) (3.1)

RE ~ kleo o
and in the case of the steady-state approximation

1 + kz) . (3.2)

Introducing the quantity KM = (k 1 + kz)/kl, a parameter known as the Michaelis

AXSS = kleosol(klso +k_

constant of the reaction, one can put equation (3.2) in the form

SS eoso/(so + KM)

eo[l - KM/(s0 + KM)] . (3.3)

Ax

The proportionality of Axss to e, is not surprising: x cannot at any time be

o
greater than e, and therefore, if e, is very small, dx/dt is nearly zero and the
basic assumption of the steady-state approximation is fulfilled. Somewhat unexpected,
on the other hand, is the result concerning the influence of the initial concentra-

tion of substrate s_ . When assaying an enzyme in vitro, one tends to shy away from

o*
using very dilute solutions of substrate because of the experimental difficulties

often associated with such preparations (e.g. the correction for spontaneous hydro-
lysis may become important) and in consequence, one naturally tends to attribute less
weight to data obtained under these conditions. It follows, however, from formula
(3.3) that all other things being equal, results obtained with very low concentra-
tions of substrate and analyzed following the Briggs-Haldane scheme are bound to be
more correct than those obtained with relatively high concentrations.

Similarly, one can cast the error term associated with the rapid equilibrium
theory (3.1) in the form

Axpp = e[l -K/(sy + K)]

where K = k_l/ kl is the dissociation constant of the activated complex. As in the



804 C. MARMASSE and J. WIENER

case of the steady-state approximation, the error decreases with e, and s ; however
this time it is the effect of s, which was predictable (as a very small value of Sy
justifies the assumption ds/dt = 0) and the effect of e, which is unexpected.

The importance of the term AXRE - Axss remains to be examined when e, and s, are
given: this difference will be negligible is the quantity KM - K is negligible, which
requires in turn that k—l be much greater than Ky The latter condition means that
the dissociation of the activated complex into the products of the reaction should be
slow enough not to perturb appreciably the equilibrium between the free enzyme and
the activated complex. This is a rash assumption [1] and therefore its realization is

of uncertain occurrence, and, except when € and/or s_ are very small, the quantity

o
AXRE - Axss is likely to be significantly different from zero for most enzymatic re-
actions. Thus, loosely speaking, one should often expect in practice to find the
isoclines of zero and infinity appreciably separated near t = 0.

This is to say that the case for the rapid equilibrium theory is rather weak and
that the steady-state approximation is to be preferred as a general method.

Finally it must be pointed out that the form of the error term AXSS (and that of
AXRE as well) suggests that when several sets of experimental data referring to the

same enzymatic reaction are available, the analysis of the results will be facili-

tated by carrying out an extrapolation to zero initial concentration of the enzyme
and/or the substrate.
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