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ABSTRACT. We introduce the subclass Tj(n,m, a) of analytic functions with negative

coefficients by the operator Dn. Coefficient inequalities and distortion theorems

of functions in Tj(n,m,a) are determind. Further, distortion theorems for fractional

calculus of functions in Tj(n,m,a) are obtained.
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1. INTRODUCTION.

Let A. denote the class of functions of the form

f(z) z + [ akzk (j N [1,2,3 })
k=j+l

(1.1)

which are analytic in the unit disk U {z:Iz < i}.

For a function f(z) in Aj, we define

DOf(z) f(z),

Dlf(z) Df(z) zf’(z),

and

Dnf(z) D(Dn-lf(z)) (n N).

With the above operator Dn, we say that a function f(z) belonging to A. is in the class

Aj(n,m,) if and only if

RelDn+mf(z)lf > (n,m NO N J {O})
Dnf(z)

for some a (0 _<_ a < i), and for all z U.
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We note that AI(0,1, a) S (a) is the class of starlike functions of order

AI(1,1 ,a) K() is the class of convex functions of order , and that Al(n,l,)
() is the class of functions defined by Salagean [I].
Let T. denote the subclass of Ao consisting of functions of the form

f z z [ a
k
z
k (ak > O; j

__
N).

k=j+l
(.6)

Further, we define the class Tj(n,m,a) by

Tj(n,m,) Aj(n,m,a)(’ T..j (1.7)

Then we observe that TI(O,I,) T (a) is the subclass of starlike functions of order s

(Silverman [2]), TI(I,I a) C() is the subclass of convex functions of order a

(Silverman [2]), and that Tj(O,l,a) and Tj(I,I,a) are the classes defined by Chatterjea

[3].

2. DISTORTION THEDREMS.

We begin with the statement and the proof of the following result.

LE I. Let the function f(z) be defined by (1.6) with j 1. Then

f(z) Tl(n,m, if and only if

[ kn(km a)ak <= 1
k=2

for n NO, m N0, and 0 =< a < i. The result is sharp.

PROOF. Assume that the inequality (2.1) holds and let zl i. Then we have

Dn+mf(z)
Dnf(z)

[ kn(km- 1)aklzi k-I

k=2

i [ knak zlk-I
k=2

[ kn(km- l)ak
k--2

1_- [knak
k--2

(2.2)

which implies (1.5). Thus it follows from this fact that f(z) Tl(n,m,a).
Conversely, assume that the function f(z) is in the class Tl(n,m,e). Then

T kn+ma zk-l]

k--2

> a (2.3)
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for z U. Choose values of z on the real axis so that Dn+mf(z)/Dnf(z) is real. Upon

clearing the denominator in (2.3) and letting z through real values, we obtain

Y kn+ma
k __>(1 knak)

k=2 k=2
(2.4)

which gives (2.1). The result is sharp with the extremal function f(z) defined by

a kf(z) z- z (k => 2) (2.5)
kn(km- ct)

REMARK I. In view of Lemma I, Tl(n,m,a) when n N0 and m N is the subclass

of T (a) introduced by Silverman [2], and Tl(n,m,a) when n N and m N is

the subclass of C(a) introduced by Silverman [2].
With the aid of Lemma I, we prove

THEOREM I. Let the function f(z) be defined by (1.6). Then f(z) Tj(n,m,a) if

and only if

kn(km a)a
k

_
(2.6)

k=j+l

for n NO m NO and 0 __< a < I. The result is sharp for the function

a kf(z) z z (k => j + I). (2.7)
kn(km a)

PROOF. Putting a
k

0 (k 2,3,4 j) in Lemma i, we can prove the assertion of

Theorem I.

COROLLARY I. Let the function f(z) defined by (1.6) be in the class Tj(n,m,a).
Then

a
k < (k > j + 1). (2.8)

kn(km- a)

The equality in (2.8) is attained for the function f(z) given by (2.7).
COROLLARY 2. Tj(n+l,m,a) Tj(n,m,a) and Tj(n,m+l,a) Tj(n,m,a).
REMARK 2. Taking (j,n,m) (i,0,i) and (j,n,m) (I,i,I) in Theorem I, we have

the corresponding results by Silverman [2]. Taking (j,n,m) (j,O,l) and (j,n,m)
(i,i,I) in Theorem I, we have the corresponding results by Chatterjea [3].

THEOREM 2. Let the function f(z) defined by (1.6) be in the class Tj(n,m,a). Then

iDif(z)l > iz a izlj+l (2.9)
(j + l)n-i{(j + i)m a}

and

a j+lIDif(z)l _< Izl + Izl (2.10)
(j + l)n-i{(j + l)m -a}

for z U, where 0 =< i <__ n. The equalities in (2.9) and (2.10) are attained for the
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function f(z) given by

j+lf(z) z (2.11)
(j + 1)n{(j + 1)m }

PROOF. Note that f(z) Tj(n,m,a) if and only if Dif(z) Tj(n-i,m,a), and that

Dif(z) z- [. kiakzk. (2.12)
k=j+l

Using Theorem i, we know that

(j + l)n-i{(j + I)m a} [ kia
k __< -a,

k=j+l
(2.13)

that is, that

[ ka
k

k=j+l (j + 1)n-i{(j + 1)m a}
(2.14)

It follows from (2.12) and (2.14) that

I j+l[Dif(z)[ _> [z[-
)n-i{ )m

[z[ (2.15)
(j + (j + -a}

and

1 a Iz lJ+lIDif(z) -< Izl +
)n-i{ )m

(2.16)
(j + (j + -a}

Finally, we note that the equalities in (2.9) and (2.10) are attained for the function

f(z) defined by

1- a .j+lDif(z) z- (2.17)
(j + l)n-i{(j + l)m }

This completes the proof of Theorem 2.

COROLLARY 3. Let the function f(z) defined by (1.6) be in the class Tj(n,m,).
Then

f(-)l >_ Iz (x Izl j+l (2.18)
(j + 1)n{ (j + 1)m (x}

and

If(z) <_ Izl + i.l j+l (2.19)
(j + 1)n{ (j + 1)m a}

for z U. The equalities in (2.18) and (2.19) are attained for the function f(z)

given by (2.11).

PROOF. Taking i 0 in Theorem 2, we can easily show (2.18) and (2.19).
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COROLLARY 4. Let the function f(z) defined by (1.6) be in the class Tj(n,m,=).
Then

If’(z) > e izlj (2.20)
(j + l)n-l{ (j + l)m }

and

If’(z)l _< i + i- a izlj (2.21)
(j + l)n-l{ (j + l)m a}

for z U. The equalities in (2.20) and (2.21) are attained for the function f(z)

given by (2.11).

PROOF. Note that Df(z) zf’(z). Hence, making i in Thorem 2, we have the

corollary.

REMARK 3. Taking (j,n,m) (i,0,i) and (j,n,m) (I,I,i) in Corollary 3 and

Corollary 4, we have distortion theorems due to Silverman [2].

3. DISTORTION THEOREMS FOR FRACTIONAL CAIUS.
In this section, we use the following definitions of fractional calculus by Owa

[4].
DEFIHITIOH 1. The fractional integral of order I is defined by

D-If(z) F( f(z)
z 0 (z E)

l,ld (3.1)

where I > 0, f(z) is an analytic function in a simply connected region of the

z-plane containing the origin and the multiplicity of (z )I-I is removed by

requiring log(z ) to be real when (z- ) > O.

DEFINITION 2. The fractional derivative of order I is defined by

zl I d Iz f() dED f(z) r(l I) d-- 0 (z )
(3.2)

where 0 ! I < 1, f(z) is an analytic function in a simply connected region of the z---plane contining the origin and the multiplicity of (z ) ms removed by requiring

log(z ) to be real when (z ) > O.

DEFINITION 3. Under the hypotheses of Definition 2, the fractional derivative of

order (n + I) is defined by

Dn+If(z) ---D1f(z) (3.3)
z dzn n

where 0 __< < and n N0 {0,1,2,3 }.

THEOREM 3. Let the function f(z) defined by (1.6) be in the class Tj(n,m,(,). Then

zl i+ r(,i + 2)F(2 + I).(1 a)]D1(Dif(z))l > r(2 + ) 1-
r(j + 2 + 1)(j + l)n-i{(j + I)m- a}

(3.4)
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and

zll+X F(i + 2)F(2 + ).(i- a) JlID %(mif(z))l < F(2 + ) + Izl (3.5)
F(j + 2 + %)(j + l)n-i[(j + i)m a}

for > O, 0 __< i <__ n, and z U. The equalities in (3.4) and (3.5) are attained for

the function f(z) given by (2.11).

PROOF. It is easy to see that

F(2 + %)z-XDl(Dif(z)) z [ r(k + I)F(2 + k)ki k
F(k + + X) akz

k=j+l
(3.6)

Since the function

(k) r(k + 1)r(z + x)
r(k + +X) (k > j + 1) (3.7)

is decreasing in k, we have

0 < (k) < (j + 1) F(j + 2)r(2 + )
r(j + 2 + x) (3.8)

Therefore, by using (2.14) and (3.8), we can see that

It(2 + %)z-%(Dif(z))l => Izl- (j + )Izl j+ I kia
k

k=j+l

> Izl ,+ 2)r(2 + X).(l -a) izlJ+
F(j + 2 + )(j + l)n-i{(j + I)m a}

which implies (3.4), and that

It(2 + X)z-D%(Dif(z))l __< Izl + (j + )Izl j+l I kia
k

k=j+l

(3.9)

< Izl + r(_ + 2)F(2 + ).(I -a) izlJ+ (3.o)
r(j + 2 + l)(j + l)n-i{(j + I)m- a}

which shows (3.5). Furthermore, note that the equalities in (3.4) and (3.5) are

attained for the function f(z) defined by

zI+XD-X(Dif(Z))z r(2 + )
r(i + 2)r(2 + x).(l -a) zJ/

r(j + 2 + )(j + 1)n-i{ (j + 1)m a}
(3.11)

or (2.17). Thus we complete the assertion of Theorem 3.

Taking i 0 in Theorem 3, we have

COROLLARY 5. Let the function f(z) by (1.6) be in the class Tj(n,m, ).
Then
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IDf(z)l => r(+ )
r(_i + 2.)r(2 + x).(l -a) izl j

r(j + 2 + x)(j + l)n{(j + i)m- a}
(B.12)

and

f |zll+i r(.i + 2)r(2 + A).(l -a)ID (z) < r(2 + x) +
r(j + 2 + A)(j + l)n{(j + I)m- a}

Izl j (3.13)

Then

for k> 0 and z U. The equalities in (3.12) and (3.13) are attained for the

function f(z) given by (2.11).
Finally, we prove

TIRE 4. Let the function f(z) defined by (1.6) be in the class Tj(n,m,a).

z
x Izll-;[ID (Dif(z))[ > r(2- ),) 1 r(_ + .)r(2- ,).C1

r(j + 2 %)(j + 1)n-i-l{ (j + I)m a}
Izl j (3.14)

and

II-[ r(] + l)r(2- ).(i- a) jIDz(Dif(z))l < r(2 A) [1 + Izl (3.15)
r(j + 2 )(j + l)n-i-l[(j + i)m e}

for 0 < I, 0 i n I, and z U.
The equalities in (3.1) and (3.15) are attained for the function f(z) given by (2.11).

PROOF. A simple computation gives that

r(2 k)Zz(Dif(z)) z- I rlk + l)r(2- %)ki k

k=j+l F(k + 1- )t) akz (3.16)

Note that the function

r(k)r(2- )(k) rCk + ) (k > j + i) (3.17)

is decreasing in k. It follows from this fact that

0 < $(k) < $(j + I)
r(j + 1)r(2 x)

r(j + 2- x)

Consequently, with the aid of (2.14) and (3.18), we have

(3.18)

It( 2 )zADz(Dif(z))l >= I--I -,(J + I)lzl j+l I ki+lak
k=j+l

r(_i + 1)r(2 -,%).(1 a)

r(j + 2 E)(j + 1)n-i-l{(j + 1)m a}
]zl j+l (3.19)

and

r(2- x)z (Dif(z))I <_-I-I + (J + 1)[zlJ+l I ki+la
k

k=j+l
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< Izl +
r(j + I)F(2- ,).(I- ) izlj+l (3.20)

r(j + 2- )(j + l)n-i-l{(j + I)m }

Thus (3.14) and (3.15) follow from (3.19) and (3.20), respectively. Further,

since the equalities in (3.19) and (3.20) are attained for the function f(z) defined by

z F(j + 1)F(2- A).(1D%(Dif(z)) F(2 ) F(j + 2- %)(j + l)n-i-l{(j + I)m -Jl (3 21)

that is, by (2.17), this completes the proof of Theorem 4.

Making i --0 in Theorem 4, we have

COROLLARY 6. Let the function f(z) defined by (1.6) ber in the class Tj(n,m,=).
Then

z
Izl -x rc + l)r(2- ).(i -) jID f(z)l > r(2- x) I- Izl

r(j + 2- )(j + l)n-l{(j + i)m- }
(3.22)

and

IDzf(z)l --< F(2-") + r(i + 1)r(2 >,).(1 a)

r(j + 2 x)(j + 1)n-1{ (j + 1)m
(3.23)

for 0 < < and m U. the equalities in (3.22) and (3.23) are attained for the

function f(z) given by (2.11).
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