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ABSTRACT. We introduce the subclass Tj(n,m,a) of analytic functions with negative
coefficients by the operator D", Coefficient inequalities and distortion theorems
of functions in T.(n,m,a) are determind. Further, distortion theorems for fractional

calculus of functions in Tj(n,m,a) are obtained.
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1. INTRODUCTION.

Let Aj denote the class of functions of the form

fz) =z+ ] az' (GEN={1,23,...) (1.1)

k=j+1

which are analytic in the unit disk U = {z:]|z| < 1}.

For a function f(z) in Aj’ we define

%% (z2) = £(2), (1.2)
Df(z) = DE(2) = 2£'(z), (1.3)

and
D"f(z) = D" lE(z)) (n & N). (1.4)

With the above operator D", we say that a function f(z) belonging to Aj is in the class

Aj(n,m,a) if and only if

n+m
Re(Z—£E) 5y (a,m €N, =N U (OD) (1.5)
D"£(z) 0

for some o (0 { @ < 1), and for all z & U.
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*

We note that AI(O,I,(!) = S (a) is the class of starlike functions of order a,
Al(l,l,a) = K(a) is the class of convex functions of order @, and that Al(n,l,a)
= Sn(a) is the class of functions defined by Salagean [1].

Let TJ. denote the subclass of AJ. consisting of functions of the form

oo

fz)=z- ] az (3,20 i€ M. (1.6)
k=j+1

Further, we define the class 'I'J.(n,m,(!) by

Tj(n,m,u) = Aj(n.m,a)ﬂ Tj. (1.7)

Then we observe that '1‘1(0,1,01) = T*(a) is the subclass of starlike functions of order a
(Silverman [2]), Tl(l,l,a) = C(a) is the subclass of convex functionsof order o
(Silverman [2]), and that TJ.(O,I,u) and Tj(l,l,a) are the classes defined by Chatter jea
[3].
2. DISTORTION THEOREMS.

We begin with the statement and the proof of the following result.

LEMMA 1. Let the function £(z) be defined by (1.6) with j = 1. Then
f(z) & T,(n,m,a) if and only if

LM - a)a (1 -0 (2.1)
k=2

for n € “0’ m & NO’ and O ga<l. The result is sharp.
PROOF. Assume that the inequality (2.1) holds and let |z| = 1. Then we have

-]
k-1
7K™ - Da |z|
DMME() ll ¢ k=2 k
n = -
D f(z) 1 - 2 knaklzlk-l
k=2
0
KM 1ay
= k=2
pos n
1- Yka
k=2 K
<l-a (2.2)

which implies (1.5). Thus it follows from this fact that f(z) & Tl(n.m,a).

Conversely, assume that the function £(z) is in the class Tl(n,m,a). Then

o
1- 7 kn+makzk--1]

n+m &
Re D = f(z)] = Re k‘:
D f(z) J 1 - z knakzk—lj
k=2

>a (2.3)
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for z & U. Choose values of z on the real axis so that Dn+mf(z)/an(z) is real. Upon

clearing the denominator in (2.3) and letting z + 1 through real values, we obtain

© oo
1- I k™ a1 - ] «"a) (2.4)
k=2 = k=2

which gives (2.1). The result is sharp with the extremal function f(z) defined by

1-a k

f(z) =z - ————=
k'™ - )

(k 2 2) (2.5)

REMARK 1, In view of Lemma 1, Tl(n,m,a) when n é NO and m &€ N is the subclass
of T*(C!) introduced by Silverman [2], and Tl(n,m,a) when n € N and m & N is
the subclass of C(@) introduced by Silverman [2].

With the aid of Lemma 1, we prove

THEOREM 1. Let the function f(z) be defined by (1.6). Then f(z) & TJ.(n,m,a) if
and only if

T k"™ - Wa, g1-a (2.6)
k=j+1 B

for n & NO’ m & NO and 0 ga<l1. The result is sharp for the function

1-0 k

f(z) =z -
K"'(™ - @)

(k2 j+1). (2.7

PROOF. Putting a = 0 (k = 2,3,4,...,j) in Lemma 1, we can prove the assertion of
Theorem 1.

COROLLARY 1. Let the function f(z) defined by (1.6) be in the class Tj(n,m,a).
Then

ak<'——1.-(1

o (k> 3+ 1). (2.8)

The equality in (2.8) is attained for the function f(z) given by (2.7).
COROLLARY 2. Tj(n+1,m,a) C Tj(n,m,a) and Tj(n,m+l,a) (- Tj(n,m,u).

REMARK 2, Taking (j,n,m) = (1,0,1) and (j,n,m) = (1,1,1) in Theorem 1, we have
the corresponding results by Silverman [2]. Taking (j,n,m) = (j,0,1) and (j,n,m)
= (1,1,1) in Theorem 1, we have the corresponding results by Chatterjea [3].

THEOREM 2. Let the function f(z) defined by (1.6) be in the class Tj(n,m,a). Then

IDie(z)| > |2| - 1-o |z| 3 (2.9)
212zl G+ D"MG+ D" - a) l=|

and

IDYE(2)| < |z| + l-o |z| 3t (2.10)
< Izl G+ DG+ D)™ - a}l |

for z € U, where O i ¢ n. The equalities in (2.9) and (2.10) are attained for the
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function f(z) given by

£(z) = z - l-a L +1 (2.11)
G+ DMG+ D" - a}

PROOF. Note that £(z) & T,(n,ma) if and only if pii(z) € T (n-i,m,0), and that

. © kY
D'f(z) =z - ] k'az*. (2.12)
k=3j+1
Using Theorem 1, we know that
G+D"MG+D"-a} [ Ka g1-aq, (2.13)
k=j+1
that is, that
o . 1
I Kka < —= & — . (2.14)
k=j+1 G+1) G +1) -a}
It follows from (2.12) and (2.14) that
Ipie(2)] 3 |2l - Lo |, (2.15)
G+DTHGE+ 1) - al
and
IDie(z)| < Jz] + l-o l2 . (2.16)

G+D"HG+ D" - a)

Finally, we note that the equalities in (2.9) and (2.10) are attained for the function
f(z) defined by

Dif(z) = 2 - l- o 1, (2.17)
G+ D" MG+ D" - ;—}1

This completes the proof of Theorem 2.
COROLLARY 3. Let the function f(z) defined by (1.6) be in the class Tj(n,m,aJ.
Then

l£(2)| > |z| - Lo |z]3*1 (2.18)
= G+ D™MG + 1) - a)
and
l£2)] < lz] + l-a | 2| 3+ (2.19)

| G+ DMG + D" - a)

for z € U. The equalities in (2.18) and (2.19) are attained for the function £(z)
given by (2.11).
PROOF. Taking i = O in Theorem 2, we can easily show (2.18) and (2.19).
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COROLLARY 4. Let the function f(z) defined by (1.6) be in the class Tj(n,m,a).
Then

l£'(z)| > 1 - l-o || 3 (2.20)
)l 2 G+ DG+ D" -a)
and
le'(z)] g1+ — 2| (2.21)

G+D"HG+ D" -

for z &€ U. The equalities in (2.20) and (2.21) are attained for the function f(z)
given by (2.11).

PROOF. Note that Df(z) = zf'(z). Hence, making i = 1 in Thorem 2, we have the
corollary.

REMARK 3. Taking (j,n,m) = (1,0,1) and (j,n,m) = (1,1,1) in Corollary 3 and
Corollary 4, we have distortion theorems due to Silverman [2].
3. DISTORTION THEOREMS FOR FRACTIONAL CALCULUS.

In this section, we use the following definitions of fractional calculus by Owa
[4].

DEFINITION 1. The fractional integral of order A is defined by

Y 1 [P f(=)
D,"f(2) = o3y Jo .- F,)Hde: (3.1)

where A > 0, f(z) is an analytic function in a simply connected region of the

z-plane containing the origin and the multiplicity of (z - & )"_1 is removed by
requiring log(z — &) to be real when (z - £) > O.

DEFINITION 2. The fractional derivative of order X is defined by

A 1 d [%£(8)
D) = T Ty 1 Jo - g)AdE, (3.2)

where 0 ¢ A < 1, f(z) is an analytic function in a simply connected region of the z-
plane contining the origin and the multiplicity of (z - 5)_A is removed by requiring
log(z - &) to be real when (z - &) > O,

DEFINITION 3. Under the hypotheses of Definition 2, the fractional derivative of
order (n + }) is defined by

n
D™ e(2) = L pe(2) (3.3)
z dzl’l n

where 0 < A< 1 and n No = {o0,1,2,3,...}.
THEOREM 3. Let the function f(z) defined by (1.6) be in the class Tj(n,m,a). Then

. 1+
ID'A(le(z))l > IZI 1 - I'(f + 2)r(2 + A)‘(l -a) lzlj (3.4)
2 ST+ rGr24+ G+ DYHG+ D" - o)
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and

T(i+ T2 + A -a) f2|j (3.5)

DA e(z)) ] < 2
z - TG+2+0G+ DG+ D™ - a)

L, .
(2 + 1))
for A > 0, O £ig¢n, and z U. The equalities in (3.4) and (3.5) are attained for

the function f(z) given by (2.11).
PROOF. It is easy to see that

A=A i _ T Ik + DIQ + N4k
I'(2 + Az Dz (D7 f(2)) = z - . X Tk 1 +A) K 2% (3.6)
=j+1
Since the function
Ik + VT2 + ) .
o) = = TN (k2 3+ 1) (3.7)
is decreasing in k, we have
. TG+ T2 +
0<o(k) < o(j+1)= TG 2N (3.8)
Therefore, by using (2.14) and (3.8), we can see that
T2 + D220 E)] > lz] - 65 + D]z]3*! T kla
z = : k
k=3j+1
> lz| - I'(4 + 2)T(2 +n}%f(1 - q)m |z|j+l (3.9)
T(G+2+ NG+ {(G+1) - a}
which implies (3.4), and that
ApA, i . TS B
T2 + V27D (D E)| < |zl + 65 + 1)z I Ka
z = .
k=j+1
< 2| + '+ 2)T(2 + V)1 -a) lz|j+l (3.10)

TG+2+0G+ DG+ D" - )

which shows (3.5). Furthermore, note that the equalities in (3.4) and (3.5) are
attained for the function f(z) defined by

144

I'(i + T2 + DA - o) J
r(22+ A)ll - 1 z (3.11)

TG+2+M)G+ DG+ D" -a)

D;"(Dif(z)) =

or (2.17). Thus we complete the assertion of Theorem 3.

Taking i = 0 in Theorem 3, we have

COROLLARY 5. Let the function f(z) by (1.6) be in the class Tj(n,m,a).
Then
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1+A .
D] 5 L2 I+ M@+ N-U-a) 3 (3.12)
z ST+ rGe24+ MG+ DYG+ D™ - o)
and
1+
- i N1 - a) j
T 108 Y I 1 i P I(i+ 22 + |z| (3.13)
2 TN T rG e 24 NG+ DMG D" - a)

for A> 0 and z &€ U. The equalities in (3.12) and (3.13) are attained for the
function f£(z) given by (2.11).

Finally, we prove

THEOREM 4. Let the function f(z) defined by (1.6) be in the class Tj(n,m,a).
Then

LG+ D@ = 1) -a)
TG +2-0G+ DY G+ )" -

1- )
|D CRION rJz z] ){1 - }:zlJ] (3.14)

and

1- A .
IDXDs(2)) ] < r(%ZI Mk I+ DIGZ =Ml =) Isz] (3.15)
F(:i+2~>\)(j+1) {(G+1)" - a}
for 0 { A<1,0¢ign-1, and zE U.
The equalities in (3.14) and (3.15) are attained for the function f(z) given by (2.11).
PROOF. A simple computation gives that

Aept - § Ik + DR - W),
r2 - N2’A0le(2)) = 2 - k=§+l SR Sy S (3.16)

Note that the function

v = FRIZ=N 5 541y (3.17)

is decreasing in k. It follows from this fact that

0 k) g u(g + 1) = T IE A, (3.18)

Consequently, with the aid of (2.14) and (3.18), we have

72 = D20 3 (2] - v+ DI T e
=j+

> |zl - ' + HI(2 -né)i-.-gl - a) - |z|J'+1 (3.19)
T(3+2-NG+1) {((G+1) - a)

and

P2 - M) < [2] + w5 + Dz AT vy,
=j+
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T(i+ DFQ2 -2 - ) |z]3*1. (3.20)

< + £
$ el FGG+2-0G+ D" NG+ D™ - a)

Thus (3.14) and (3.15) follow from (3.19) and (3.20), respectively. Further,
since the equalities in (3.19) and (3.20) are attained for the function f(z) defined by

1-A .

A i z F(j+ D2 -A).(1 -0a) ]
D(D7f(z)) = 1 - " z7 |, (3.21)

2 D TTR - M ru+z-xxj+nmkﬁu+1ﬂ-a}]

that is, by (2.17), this completes the proof of Theorem 4.

Making i = O in Theorem 4, we have

COROLLARY 6. Let the function f(z) defined by (1.6) ber in the class Tj(n,m,a).
Then

A IZII-A [ F(i+ D@2 - -1 -a) | j]
Df(2)| > 1- z| (3.22)
P26 2 72 = M T rGe2-0G DY HG+ D - g
and
|

o

(i + DI2 - M-l - a) }}zlj] (3.23)

A z
D f(z) 1+
izz|°ru‘*4 FGG+2-0G+ DY HG+ D" -«

for 0 ¢ A< 1 and z & U. the equalities in (3.22) and (3.23) are attained for the
function £(z) given by (2.11).
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