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ABSTRACT. The present paper is mainly concerned with establishing conditions which
.assure that all lattice regular measures have additional smoothness properties or
that simply all two-valued such measures have such properties and are therefore Dirac
measures. These conditions are expressed in terms of the general Wallman space. The
general results are then applied to specific topological lattices, yielding new con-
ditions for measure compactnesss Borel measure compactness, clopen measure replete-
ness, strong measure compactness, etc. In addition, smoothness properties in the
general setting for lattice regular measures are related to the notion of support,

and numerous applications are given.
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1. INTRODUCTION.

In an earlier paper [5], we obtained conditions for o-smoothness, T-smoothness,
and tightness of lattice regular measures. This was done in a general framework for
a set X and a lattice of subsets of X, L, which was just disjunctive and at times
separating. The general approach was adopted so as to fit many topological lattices
which are not & or not normal. This approach was made possible by utilizing gen-
eral lattice regular measure extension theorems (see [4]). Thus it was possible to
bypass the general Alexandroff Representation Theorem [2] in which a delta normal
lattice is needed. The results were then expressed in terms of IR(L)-X, where
IR(L) is the general Wallman space associated with the set X and the lattice L.

These results generalized known results pertaining to Baire measures and BX-X,
where BX is the Stone-Cech compactification of the Tychonoff space X. In particu-

lar, our general approach lead to new results pertaining to smoothness and tightness
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of closed regular Borel measures in just 'I‘l topolugical spaces expressible in terms

of wX-X, where wX is the Wallman compactification of X and also to clopen regular

Borel measures in o-dimensional T1 spaces expressible in terms of BOX—X, where BOX

is the Banaschewski compactification of X.

In the first part of this paper we utilize the framework of the previously men-
tioned paper and obtain new results for lattice repleteness, measure repleteness and
strongly measure repleteness. We then apply these results to specific topological
lattices and obtain new conditions for measure compactness, Borel measure compactness,
and clopen measure repleteness and similar facts for strongly measure compactness,
strongly Borel measure compactness, and strongly clopen measure repleteness. (See, in
particular, Theorems 2.4, 2.6 and their consequences and associated examples.)

It is advantageous to be able to characterize various repleteness properties in
terms of support of certain measures. We pursue this in general in the second part of
the paper. We cite here just one of the more important results (see Theorem 3.3): If
L is separating and disjunctive, then L is measure replete iff the support of every
o-smooth, L-regular measure (which is not the zero measure) is nonempty. This result
ﬂas many applications. Thus, in this part of the paper, we concentrate on various as-
pects of support of a measure.

2. TERMINOLOGY AND NOTATION.

I. Most of the terminology used in the present paper goes back to Wallman [10]
and Alexandroff [1], [2]. Some of the more recent terminology appears in Noebeling [7]
and Frolik [6], as well as in [5], [8]. For the reader's convenience, in this part we
will collect some of the special terminology which is used throughout the paper.

Consider any set X and any lattice of subsets of X, L. The algebra of subsets
of X generated by L is denoted by A(L). The c-algebra of subsets of X gener-
ated by L 1is denoted by of{l). Next, consider any algebra of subsets of X, A. A
measure on A 1is defined to be a function, u, from A to R, such that u is
bounded and finitely additive. The set whose general element is a measure on A(L)
is denoted by M(L). For the general element of M(L), u, the support of u is de-
fined to be n{L € L/IuI(L) = Iul(X)} and is denoted by S(u). An element of M(L),
¥, 1s said to be L-regular iff for every element of A(L), E , for every positive num-
ber, € , there exists an element of L , L , such that L € E and Iu(E)-u(L)l < €.
The set whose general element is an element of M(L) which is L-regular is denoted by
MR(L). An element of M(L), u , is said to be L-(o-smooth) iff for every sequence in

A(L), <An>, if <An> is decreasing and 1lim An = @, then 1lim u(An) = 0. The set
n n

whose general element is an element of M(L) which is L-(o-smooth) 1is denoted by

M(o,L). The set whose general element is an element of M(L) which is o-smooth just

for < A.n > in L is denoted by M(o*,L). An element of M(L), y , is said to be

L-(t-smooth) iff for every net in L, < La >, if < Lu > 1s decreasing and lim La=¢,
1

then lim u(La) = 0. The set whose general element is an element of
o

M(L) which is L-(7-smooth) is denoted by M(t,L). An element of M(L), u , is said
to be L -tight iff U € M(o,L) and for every positive number, €, there exists an

L-compact set, K, such that Iul*(K) < € . The set whose general element is an ele-
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ment of M(L) which is L-tight is denoted by M(t,L). The set whose general
element is an element of M(L), u, such that wu(A(L)) = {0,1}, that is, the set of 0-1
measures is denoted by T(L).

L is said to be replete iff whenever an element of I(L) , u , belongs to
IR(o,L), then S(u) # #. L is said to be prime complete iff whenever an element of
I(L), u , belongs to I(o*,L), then S(u) # #. L is said to be measure replete iff
MR(o,L) = MR(t,L). L 4is said to be strongly measure replete iff MR(o,L) = MR(t,L).
Next, consider any topological space X and denote its collection of closed sets by F,
its collection of open sets by 0, its collection of clopen sets by C, and its collec-

tion of zero sets by Z. 1In case X is T3§, X is said to be realcompact iff Z

is replete. X is said to be a-complete iff F is replete. X is said to be N-
compact iff C is replete. Moreover, X is said to be measure compact iff Z is
measure replete. X 1is said to be Borel measure compact iff F 1is measure replete.
X 1is said to be clopen measure replete iff C is measure replete.

NOTE. Since every element of M(L) is expressible as the difference of nonnega-
tive elements of M(L), without loss of generality, we shall work with nonnegative
elements of M(L).

II. Among the principal tools utilized in the present work are three measures in-
duced by the general element of M(L), denoted by u; (these measures are denoted by
fi, i, and u') and certain criteria for o-smoothness, T-smoothness, or tightness,
which are expressed in terms of f{i, {i, or u'. (See [5].)

For the reader's convenience, in this part we collect thedefinitions of{i, {i, and

' and we summarize (in the form of a theorem) the principal facts pertaining to the

u
criteria mentioned above.

Preliminaries. Consider any set X and any lattice of subsets of X, L, such
that L 1is separating and disjunctive. It is known that the topological space
< IR(L), twW(lL) > 1is compact and Tl; it is T2 iff L 1is normal. (See e.g., [4]
and [9]). Consider the function ¢ which is such that the domain of ¢ is X and
for every element of X, x, ¢(x) = be Then ¢ dsa < tl, tw(lL) > -homeomorphism.

For this reason, ¢(X) is topologically identifiable with X. Moreover, ¢(X) 1is
dense in IR(L). Consequently IR(L) is a compactification of X. In case ¢(X) is
identified with X, X is said to be embedded in IR(L).

(i) Definition of {i. Denote the general element of A(L) by A. Then
{u e IR(L)/u(A) = 1} 1is denoted by W(A). Moreover, {W(L); L € L} is denoted by
w(l).

Proposition 1.1.
1. For every element of A(L), A, W(A)' = W(A").
2. For every two elements of A(L), A, B,
a) W(A UB) = W(A) UW(B);
B) W(A NnB) = W(A) NW(B);
Y) If A > B, then W(A) > W(B);
§) If W(A) > W(B), then A > B;
€) A =B iff W(A) = W(B).
3. A(w(L)) = wlA(L)).

(Note all these statements are true, if L is just disjunctive.)
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Next, consider any element of M(L), u , and the function {i which is such that
the domain of fi is A(W(L)) and for every element of A(W(L)), W(A), f(W(A) =u(A).
Note fi € M(W(L)) and if u € MR(L), then f{i € MR(W(L)). Conversely, consider any
element of M(W(L)), v , and the function whicq is such that the domain of u is
A(L) and for every element of A(L), A, u(d) = v(W(A)). Note wu ¢ M(L) and v
and if Vv € MR(W(L)), then u € MR(L).

=10

Note since W(L) 1is compact,
MR(W(L)) = MR(o,W(L)) = MR(T,W(L)) = MR(t,W(L)).

Next, consider any element of MR(L), u . Then i € MR(W(L)) = MR(o,W(L)). Hence 1
is extendible to the o-algebra of fi*-measurable sets, uniquely, and the extension is
SW(L)-regular. Continue to use {i for this extension.

(ii) Definition of u'. Denote the genersl element of A(L) by A. Then

{y € IR(o,L)/u(A) = 1} 1is denoted by W (A). Moreover, {wU(L); L € L} is denoted by
WG(L].

REMARK. 1If, in each statement of Proposition 1.1, W 1is replaced by wc, the
resulting statement is true.
Next, consider any element of M(L), p , and the function u' which is such that

the domain of u' is A(WU(L)) and for every element of A(WU(L)), %,(A), u'(wo(A»
= u(A). Note u' € M(WO(L)) and if wu € MR(L), then u' € MR(WU(L)). Conversely,
consider any element of M(WO(L)), p , and the function u which is such that the
domain of p is A(L) and for every element of A{L), A, u(a) = p(W (A)). Note
weM(L) and p = yu' and if p € MR(WO(L)), then u € MR(L). Moreover, if u€ MR(L),
then e MR(o,l) iff u'e MR(0,Wy(L)).

(iii) Definition of {i.

Lemma l.1. Consider any set X and any two lattices of subsets of X, Ll’ L2,

such that L1 cLZ.

MR(LZ)’ u,» such that u

For every element of MR(LI), ”1’ there exists an element of

=1 and if L1 separates LZ’ then u, is unique.

|
2
ACL)) .

(See [2].)

Next, consider any set X and any lattice of subsets of X, L , such that L is

disjunctive. Consider any element of MR(L), u. Then {i ¢ MR(W(L)). Hence, by

Lemma 1.1, there exists an element of MR(tW(L)), {i , such that ﬁIA(w(L)) ={ and

since W(L) separates tW(L), because W(L) is compact, {i is unique.
Note since tW(L) 1is compact,
MR(tW(L)) = MR(o,tW(L)) = MR(T,tW(l)) = MR(t,tW(l)).
Consequently, {i € MR(o,tW(L)). Hence {i is extendible to the o-algebra of i*-

measurable sets, uniquely, and the extension is tW(L)-regular. Continue to use i
for this extension.

THEOREM 1.1. Consider any set X and any lattice of subsets of X, L, such that
L is- (separating) and disjunctive. For every element of MR(L), u:

1. u e MR(o,L) iff §*(X) = A(IR(L)); equivalently, p € MR(o,L) iff
U (IR(o,1)) = u(IR(L)).
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2. u e MR(t,L) iff p*{X) = @H(IR(L)).
3. uw'e MR(T,W (L)) iff i*(IR(o,L)) = f(IR(L)).
4. 1f L is also separating and normal, or T,, then u € MR(t,L) 1iff {i*(X) =

fi(IR(L)) and X is f*-measurable.
We note, for example, that the statement of part 1, "u € MR(o,L) iff a*x) =
fi(IR(L))" 4is equivalent to "u € MR(o,L) iff {x(IR(L) - X) = 0" or to "F € MK(o,L)

iff for every sequence in L, < Li >, if < Li > 1is decreasing and QW(Li) c IR(L) - %
then ﬁ(QW(Li)) = 0". Similarly, equivalent statements are obtainable for the other

parts. (For more details refer to [1].)
3. NECESSARY AND SUFFICIENT CONDITIONS.

In this section we work with an arbitrary set X and an arbitrary lattice of sub-
sets of X, L , such that L 1is separating and disjunctive and we give necessary and
sufficient conditions for L to be a) Lindeldf, b) replete, c) measure replete,
d) strongly measure replete.

a) Lindeldf property.

Theorem 2.1. The following statements are equivalent:

1. L 1is Lindel&f.

2. For every subset of L, {La; a e A}, if n{w(La); a € A} © IR(L) - X, then

there exists a subset of A, A*, such that n{W(Lu); o e A¥} © IR(L) - X and A* is
countable.

Proof. a) Assume 1, and show 2. Consider any subset of L, {La; a € A}, such
that n{W(La); a e A} < IR(L) - X. Since L 1is disjunctive, n{La; a € A} = @.

Hence, since L is Lindeldf, there exists a subset of A, A*, such that n[La; a €A}
=@ and A* is countable. Consider any such A*. Then n{W(La); a e A*} < IR(L) -X.
Consequently 2 is true.

B) Conversely, assume 2, and show 1. (Proof omitted.)

Corollary 2.1. Assume L is normal and countably paracompact. Then the follow-
ing statements are equivalent:

1. L is Lindeldf.

2. For every element of tW(L), K, if K < IR(L)-X, then there exists an element

of Z(xw(l)), K)» such that K cK, < IR(L)-X.

Proof. o) Assume 1, and show 2. Consider any element of tW(L), K, such that

K © IR(L) - X. Since K e tW(l), there exists a subset of L, {La; a € A}, such that
K = n{W(La); a € A}. Consider any such {La; a € A}, Then n{W(La);a € A} < IR(L) -X.

Hence, since L is Lindeldf , by Theorem 2,1, there exists a subset of A, A* , such
that ﬂ{W(La); a e A¥} < IR(L) - X and A* is countable. Consider any such A,
Since L is normal and countably paracompact, by [57, Theorem 2.2, part 2, there
exists an element of Z(tW(L)), KO’ such that n{W(La);a e A*} KO < IR(L) - X. Con-

sider any such KO. Then K ¢ Ko < IR(L) - X. Consequently 2 is true.
g) Conversely, assume 2, and show 1, Consider any subset of L, {La; o € A},

such that n{W(La); a € A} < IR(L) - X. Set n{w(La); a € A} = K. Then K < IR(L)-X.
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Then, since 2 is true, there exists an element of Z(tW(l)), KO’ such that K c Ko c

0 Then, since KO is tW(L)-compact and a Gs-set of

tW(L), there exists a sequence in L, < Ln > such that K n{W(Ln)'; n e NI}.

IR(L) - X. Comnsider any such K

]

0

Consider any such < L o> Then n{W(La); a € A} c n{W(Ln)'; n € N}. Hence for every
n, n[w(La); a € Al n W(Ln) = P; hence, since W(L) 1is compact, there exists an ele-
ment of A, @, such that W(Lu ) c W(Ln)';,consider any such aj. Then {La ;s neNc

n n

{La; a € A} and n{W(LOl ); n € Nle n{W(Ln)'; n € N} = K, ¢ IR(L) - X. Then, by Theorem

n

0

2.1, L 1is Lindeldf.
Examples. (1). Consider any topological space X such that X is T3% and let

L = Z. Then, by Corollary 2.1, X is Lindeldf iff for every closed subset of BX-X, K,

there exists a zero set of BX, K such that K ¢ KO c BX-X. (This result is well-

0’
known) .

(2). Consider any topological space X such that X is T1 and O-dimensional

ad let L = C, Then, by Corollary 2.1, X is Lindeldf iff for every closed subset

0 < BOX-X .

of BOX-X, K, there exists a zero set of BOX, KO, such that K c K
b) Repleteness.
Lemma 2.1. Consider any lattice of subsets of X, L , such that L is &§. For
every element of MR(L), u, the following statements are equivalent:
1. u e MR(t,L).

2. For every met in [, < La >, if < La > 1is decreasing, then u*(nLa) =
a
1§f u (La) .
3. For every subset of L, {La; a € A}, if {La; a € A} is a filter base, then

p*(nL)) = dinf u(L ). (See [81.)
o a @
Theorem 2.2. The following statements are equivalent:

1., L 1is replete.

2. For every element of IR(L), u, if u € IR( L) - X, then there exists an ele-
ment of o(W(L)), B, such that pu € B c IR(L) ~ X.

Proof. @) Assume 1, and show 2. Assume IR(L) - X # @ and consider any element
of IR(L) - X, u. Then u ¢ X. Since L is replete, IR(c,L) = X. Consequently

u ¢ IR(o,L). Hence there exists a sequence in L, < Li > , such that < Li > 1is de-

creasing and 1lim L, = @, but lim U(Li) # 0. Consider any such <L >. Note for every
i i

i, u(Li) = 1. Consequently u € gw(Li) < IR(L) - X and 2 W(Li) e o(W(L)). Conse-

quently 2 is true.
g8) Conversely, assume 2, and show 1. Note to show L is replete, it suffices to

show IR(o,L) - X = @. Assume IR(o,L) - X # @. Consider any element of 1IR(c,Ll) =X,
v. Then v € IR(L) - X. Hence, since 2 is true, there exists an element of o(W(L)),
B, such that v € B c IR(L) - X, Consider any such B.

(i) Since v € MR(L), the extension of v to the o-algebra of V*-measurable

sets (also denoted by v) 1is &W(L)-regular. Consequently V(B) = sup{G(K)/K e SW(L)
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and K c B}. Consider any element of &W(L), K, such that K < B. Then X < IR(L)
-X. Hence, by Theorem l.l, part 1, V(K) = 0. Consequently 3(B) = 0.

(ii) Since v € IR(L), {v} = n{W(L)/L € L and Vv(W(L)) = 1}. Hence, by Lemma
2.1, V*(vh = L.

(iii) Consequently 1 = 3*({v}) < 9(B) = 0. Thus a contradiction has been reach-
ed. Consequently IR(o,l) - X =@, and L is replete.

COROLLARY 2.2, L 1is replete iff whenever u ¢ IR(L) - X, then there exists a

sequence in L, < Li >, such that < L1 > 'is decreasing and u € QW(Li) c IR(L) - X.
i

(Proof omitted.)
Example. Consider any topological space X such that X is T1 and let L = F.

Then, by Corollary 2.2, X is a-complete iff whenever u ¢ wX - X, then there exists a

sequence in F, < Fi >, such that < F, > 1is decreasing and u € nF, c wX - X, where

i i 1
the closure is taken in wX.
COROLLARY 2.3. Assume L 1is normal and countably paracompact. Then the follow-
ing statements are equivalent:
1. L is replete.
2. For every element of IR(L), u , if u € IR(L) - X, then there exists an ele-

ment of Z(tW(L)), KO’ such that 1y € Ko < IR(L) - X.

Proof. o) Assume 1, and show 2. Assume IR(L) - X # @ and consider any element
of IR(L) - X, u. Then, since L 1is replete, by Corollary 2.2, there exists a se-

quence in L, < Li > , such that < Li > is decreasing and u € ?w(Li) < IR(L) - X.

Consider any such < Li >. Then, since L 1is normal and countably paracompact, by (5],

Theorem 2.2, part 2, there exists an element of Z(tW(L)), KO, such that QW(Li) c KO c
i

IR(L) - X. Comnsider any such K Then u € K, © IR(L) - X. Consequently 2 is true.

o
B) Conversely, assume 2, and show 1, To show L is replete, use Corollary 2.2.
Assume IR(L) - X # @ and consider any element of IR(L) - X, u. Then, since 2 is

true, there exists an element of Z(tW(l)), Kys such that u € Ky © IR(L) - X. Con~

0

sider any such KO. Then, since KO is a G_-set of tW(L), there exists a sequence

§
in tW(L), < Hi > , such that KO = QHi . Consider any such < “i > . Then for
i
every i, KO N H, = P; hence, since W(L) separates tW(L), there exist two elements

of L, L 1,, such that Ko € W(L,) and H; € WL and WL o WEp) = ? s

i i)
consider any such Li’ Li;then KOCW(Li)C W(Li)'CHi. Consequently KO c QW(Li) c gﬂi =

0
ing. Then < Li > is in L and < Li > 1is decreasing and u € nW(Li) c IR(L) - X.
i

K.. Hence Ko = nw(Li). Without loss of generality, assume that < Li > 1is decreas-
i

Hence, by Corollary 2.2, L is replete.
Examples, (1). Consider any topological space X such that X is T3% and let

L = Z. Then, by Corollary 2.3, X 1is realcompact iff whenever u € 8X - X, then
there exists a zero set of BX, KO , such that u € KO c BX - X. (This special case

is known.)
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(2), Consider any topological space X such that X 1is Tl and O-dimensional
and let L = C. Then, by Corollary 2.3, X 1is N-compact iff whenever u € BOX - X,

then there exists a zero-set of B8 X, Ko, such that p e K, ¢ B X - X.

0 0 0
COROLLARY 2.4. 1If there exists a collection of Fo—sets of tW(L), (Ha; a € A},

such that X = gHa , then L 1is replete.
Proof. Assume there exists a collection of Fc-sets of tW(L), {Ha; a € A},
such that X = nHa. Consider any such {Ha; a ¢ A}. To show L is replete, use
a

Theorem 2.2. Assume IR(L) - X # @ and consider any element of IR(L) - X, p. Since
X = nH , IR(L) - X = UH& . Consequently there exists an element of A, %y such that
a a

W € H' . Consider any such a_ . Then, since H is an F _-set of tW(lL), H'
ao 0 ao o ("1

is a Gg-set of tW(L). Then, since ¥ € H& , there exists a sequence in L, < Ly >
0
such that u € gw(Li) c H; . (See the proof of part B) of Corollary 2.3.) Consider
0

any such < Li >. Then nW(Li) e o(W(L)) and u € nW(Li) c IR(L) - X. Hence, by Theo-
. i i

rem 2.2, L 1is replete.
COROLLARY 2.5. If there exists a subset of Z(tW(lL)), {Ka; a € A}, such that

X = nK', then L 1is replete.
o @

Proof. Assume there exists a subset of Z(tW(l)), {Ka; a € A}, such that X = nK&.
a

Consider any such {Ka; a ¢ A}, Note for every a, since Ka e Z(tw(l)), Ka is a

Gg-set of tW(L). Hence for every a, K& is an Fc-set of tW(L). Then, by Corollary
2.4, L 1is replete.

c) Measure repleteness.

Observation. Note for every element of IR(L), uw , u € IR(os,L) iff u' € IR(o,

WO(L)). Next, for the general element of IR(c,Wc(L)), u' , note S(u') = n{WU(L)/L el
and u'(WG(L)) = 1}. Consider any element of L, L , such that u'(wo(L)) =1, Then,

by the definition of wu', u(L) = 1. Consequently u € WO(L). Hence u € S(u'), so
S(u') # . Consequently WO(L) is replete.

Summarizing: If L[ is disjunctive, then WU(L) is replete.

We will obtain a necessary and sufficient condition for WG(L) to be measure re-
plete.

Preliminaries: Consider the set whose general element is an element of MR(L), u,
such that u' ¢ MR(T,WO(L)). This set is demoted by MR(L). (See [51, p. 1517.)
According to [5], Theorem 3.2, part 1, MR(L)c MR(o,L).

Theorem 2.3. The following statements are equivalent:

1. WO(L) is measure replete.

2. MR(L) = MR(o,L).

Proof. a) Assume 1, and show 2. Note to show ﬁk(L) = MR(o,L), it suffices to
show MR(o,L) = MR(L). Consider any element of MR(o,l), u. Then ' € MR(O,WU(L)).
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Since WG(L) is measure replete, by assumption, MR(o,WG(L)) = MR(T,WG(L)). Conse-

quently u' € MR(T,WO(L)), so u ¢ MR(L). Hence MR(o,L) < MR(L). Consequently,
MR(L) = MR(o,L).

8) Conversely, assume 2, and show 1. (Proof omitted.)

COROLLARY 2.6. The following statements are equivalent:

1. L 1is measure replete.

2. L 1is replete and MR(L) = MR(o,L).

Proof. a) Assume 1, and show 2. Since L 1is measure replete, L 1is replete.

Hence IR(o,L) = X. Consequently, WO(L) = L. Hence, since L is measure replete, by
assumption, WO(L) is measure replete. Then,by Theorem 2.3, Mk(L) = MR(o,L). Conse-

quently 2 is true.
B8) Conversely, assume 2, and show 1. (Proof omitted).

Examples. (1). Consider any topological space X such that X is T3% and

let L = Z. Then, by Corollary 2.6, X is measure compact iff X 1is realcompact and
MR(Z) = MR(0,2).
(2). Consider any topological space X such that X is T1 and let L = F.

Then, by Corollary 2.6, X is Borel measure compact iff X 1is a-complete and MR(F) =
MR(c,F).

(3). Consider any topological space X such that X is T1 and O-dimensional

and let L = C. Then, by Corollary 2.6, X is clopen measure replete iff X is N-
compact and MR(C) = MR(c,C).

Lemma 2.2. For every element of MR(L), u , for every element of tW(L), K ,
p*(K) =i (K). _

Proof. Consider any element of MR(L), u , and any element of tW(L), K . Since
Ke tWw(l), K = n{W(L)/L ¢ L and W(L) > K}. Set {W(L)/L € L and W(L) > K} =
{W(L); a ¢ A}. Note 6W(L) is & and u ¢ MR(r,8W(L)) and {W(L); a € A} < 6W(L)

and {W(Lu);a € A} is,a filter base. Hence, by Lemma 2.1, 0*(K) = inf ﬁ(W(La)).
a

~

Since ﬁlA(w(L)) =u, igf u(w(La)) = igf ﬁ(w(La)). Now, note tW(L) 1is & and
U e MR(T,tW(L)) and {W(La); a € A} c tW(l) .and {W(La); a € A} 1is a filter base.
Hence, by Lemma 2.1, igf ﬁ(w(La)) = u(K). Consequently n*(K) = 1i(K).

Remark. The condition "L 1is separating and disjunctive" was not needed in the
proof,

Observation. For every element of MR(L), p, ;* 2 i*.  (Proof omitted.)

THEOREM 2.4. The following statements are equivalent:

1. L is measure‘replete.

2. For every element of MR(o,l), n , for every element of tW(L), K, if K
IR(L) - X, then 0*(K) = 0.

Proof. a) Assu&g 1, and show 2. Consider any element of MR(c,L), u , and any
element of tW(L), K, such that K < IR(L) - X . Since K € tW(L) and u e MR(L), by
Lempa 2.2, 1*(K) = i(K). Since L is measure replete, by assumption, MR(o,L) c
MR(1,L). Consequently u € MR(t,L). Hence, since K ¢ tW(L) and K < IR(L) - X, by
Theorem 1.1, part 2, {i(K) = 0. Consequently 1*(K) = 0. Thus 2 is true.
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8) Conversely, assume 2, and show 1. Note to show L 1is measure replete, it
suffices to show MR(g,L) < MR(t,L). Consider any element of MR(o,L), u. To show
u € MR(t,L), use Theorem 1.1, part 2. Consider any element of tW(L), K , such that
K ¢ IR(L) - X. Since K € tW(L) and u € MR(L), by Lemma 2.2, 1*(K) = fi(K). Since
Ke tW(Ll) and K < IR(L) - X and u € MR(0,L), by the assumption, p¥(K) = 0. Conse-
quently {i(K) = 0. Then, by Theorem 1.1, part 2, u € MR(t,l). Hence MR(o,l) <
MR(t,L). Consequently L is measure replete.

Remark. In this connection, we note the following useful result:

Proposition 2.1. Consider any two lattices of subsets of X, Ll’ L2 , such that

L, <L, and any element of MR(c,L,), v , such that le(L,) € MR(o,L}). Set

v[A(LI) =u. Then u* =v* iff w*=v on Lét
(Proof omitted.)
COROLLARY (a). For every element of MR(L), u , i* = p* iff * =3 on tW(L).

Proof. Consider any element of MR(L), . Now, use Proposition 2.1 with L1 =
Ww(L), L2 = tW(l), v =q.

. COROLLARY (B). For every element of MR(L), u , if ¥ =@ on tW(L)', then
u € MR(o,L) implies u e MR(t,L).

(Proof omitted).

COROLLARY 2.7. 1If for every element of tW(l), K, K< IR(L) - X implies there
exists an element of o(W(L)), B, such that Kc B c IR(L) - X, then L is measure
replete.

Proof. Assume for every element of tW(L), K , Kc IR(L) - X implies there
exists an element of o(W(L)), B, such that K c B c IR(L) - X. To show L is mea-
sure replete, use Theorem 2.4. Consider any element of MR(o,L), u , and any element
of tW(L), K, such that K < IR(L) - X. Then, by the assumption, there exists an
element of o(W (L)), B, such that K ¢ B ¢ IR(L) - X. Consider any such B. Then
{i*(K) < i(B). Moreover, since u € MR(o,L) and B € o(W(L)) and B < IR(L) - X,

H(B) = 0. (See the proof of Theorem 2.2, part 8). Consequently {*(K) = 0. Then
by Theorem 2.4, L is measure replete.

REMARK. Corollary 2.7 is the measure repleteness analog of Theorem 2.2 for re~
pleteness.

Observation. Since, in gemeral, Z(tW(L)) < o(W(L)), o(Z(tW(L)), < o(W(L)). (Note
o(Z(tW(L))) 1is the class of Baire sets of IR(L).)

Examples. (1). Consider any topological space X such that X is T3% and let

L = Z. 1If for every closed subset of B8X, K, K < BX - X implies there exists a Baire
set of BX, B, such that K ¢ B ¢ BX - X, then, by Corollary 2.7, X is measure com-

pact.

(2). Consider any topological space X such that X is T1 and let L = F.

If for every closed subset of wX, K, K< wX - X implies there exists a Baire set of

wX, B, such that K ¢ B ¢ wX - X, then, by Corollary 2.7, X 1is Borel measure compact.
(3). Consider any topological space X such that X is T1 and O-dimensional

and let L = E. If for every closed subset of BOX, K,..K < BOX-X implies there exists

a Baire set of BOX, B, such that K<B€ BOX'-X, then, by Corollary 2.7, X is clopen

measure replete.
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THEOREM 2.5. The following statements are equivalent:
1. L 1is measure replete.
2. For every element of MR(c,l), u , for every subset of L, (La; o e A}, if

n{La; a € A} = @, then there exists a subset of A, A*, such that A* is countable

and u(ﬂ{La; a € A*}) = 0,

(Proof omitted.)

REMARK. The condition "L is separating and disjunctive" is not needed in the
proof of this theorem.

d) Strongly measure repleteness.
THEOREM 2.6. If L is normal (or T2) and X € o(W(l)), then Lis strongly mea-

sure replete.
Proof. Assume L is normal (or T2) and X € o(W(L)). Note to show L 1is

strongly measure replete, it suffices to show MR(c,L) < MR(t,L). Consider any ele-

ment of MR(o,L), u. To show u € MR(t,L), use Theorem 1.1, part 4. Since X €
o(W(L)), X 1is fi*-measurable. Moreover, a*x) = fi(X), since X is fi*-measurable,

-

= 1 (X), since ﬂlo(W(L)) =y,
= i*(X), since X is p*-measurable,
= 3 (IR(L)), since u € MR(o,l),
= {i(IR(L)). Consequently
%) = fi(IR(L)) and X is ﬂ*—measurable. Then, since L 1is separating, disjunctive,

and normal (or TZ)’ by Theorem 1.1, part 4, u € MR(t,L). Hence MR(o,l) < MR(t,Ll).

Consequently L 1is strongly measure replete.
Examples. (1). Consider any topological space X such that X is T3% and let

L = 2. If X is a Baire set of BX, then, by Theorem 2.6, X is strongly measure com-

pact.

(2). Consider any topological space X such that X is T3;5 and normal or simply
T2 and let L = F. If X 1is a Baire set of wX, then, by Theorem 2.6, X 1is strongly
Borel measure compact.

(3). Consider any topological space X such that X is Tl and O-dimensional

and let L = C, i
e C. If X is a Baire set of BOX, then, by Theorem 2.6, X is strongly

clopen measure replete.

4. REPLETENESS PROPERTIES.

It is advantageous to be able to characterize various repleteness properties in

terms of support of certain measures. In this section we pursue this matter in general

Consider any set X and any lattice of subsets of X, L , such that
rating and disjunctive.

L 1is sepa-

@) Repleteness and support.

Preliminaries. Consider the set whose general element is an elemenc of MR(L), u
’ ’

such that whenever p ¢ IR(L) - IR(o,L), then there exists an element of twW(L)', 0 ,
such that p € 0 and f1(0) = 0. This set is denoted by ﬁR(L). (See [11], p. 1519.)
Next, consider the set whose general element is an element of MR(L), u , such that

whenever p € IR(L) - X, then there exists an element of tW(L)', 0 , such that p €0

and {(0) = 0. Denote this set by MR(L). Note MR(L) # 0 and “R(L) < MR(L).
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LEMMA 3.1. For every element of MR(L), u, wu € ﬁR(L) iff S() < X.

Proof. «) Consider any element of ﬁR(L), W. Now, consider any element of S(f1)
p. (Note, since tW(L) 1is compact, S({l) # #.) Then, since S(fi) c IR(L), p € IR(L).
éssume p ¢ X. Then p e IR(L) - X. Hence, since u € ﬁR(L), by the definition of
MR(L), there exists an element of tW(L)', 0, such that 5 ¢ 0 and f1(0) = 0. Conse-

td

quently, p ¢ S(fl). Thus a contradiction has been reached. Consequently S(fI) < X.

B8) Consider any element of MR(L), u , such that S(fl) < X. Assume IR(L) - X#9
and consider any element of IR(L) - X, p. Then o ¢ S(fI). Consequently there exists
an element of tW(L)', O, such that p € O and {i(0) = 0. Then, by the definition of
MR(L), e MR(L).

COROLLARY 3.1. For every element of MR(L), u , u € ik(L) iff S(u) = s(i).

Proof. a) Consider any element of ﬁR(L), u. Since ueMR(L), f exists and
S(u) = S(f) n X. Since y € ﬁR(L), by Lemma 3.1, part a), S(fI) ¢ X. Consequently
S(u) = s(m).

B8) Consider any element of MR(L), u , such that S(u)
S(u) < X, S(1) < X. Then, by Lemma 3.1, part B), p € ER(L).

COROLLARY 3.2. MR(L) < MR(t,L).

Proof. Consider any element of §R(L), u . To show u € MR(1,L), use Theorem
1.1, part 2. Consider any element of tW(L), K , such that K < IR(L) - X. Since
u o€ ER(L), by Lemma 3.1, S(fi) < X. Consequently K n S(iI) = f. Moreover, since S(fi)=
n{W(L)/L € L and #(W(L)) = fI(IR(L))}, by Lemma 2.1, fi(S()) = #(IR(L)). Consequently
fi(K) = 0. Then, by Theorem 1.1, part 2, u € MR(t,L). Hence ﬁR(L) < MR(T,L).

THEOREM 3.1. L 1is replete iff MR(L) < MR(L).

Proof. By [5], Theorem 3.5, part 3, L is replete iff whenever u e MR(L), then
S(1) < X. By Lemma 3.1, for every element of MR(L), u, u € ﬁR(L) iff S({{1) < X. Con-
sequently L is replete iff MR(L) c MR(L). (Recall that, in general, MR(L)c MR(L).)

THEOREM 3.2. 1) If L is replete, then for every element of M(L), u , S(u' )=

S(u).
2) 1If for every element of IR(o,L), u, S(u') = S(u), then L 1is replete.

Proof. 1) Assume L 1is replete. Consider any element of M(L), u . Then
N v
S(m') = S(u) n IR(o,L). Hence, since L 1is replete, S(u') = S(u) n X. Further, note

L]

S(fil). Then, since

S(ﬁ) n X = S(u). Consequently S(u') = S(u).

2) Assume for every element of IR(o,L), u , S(u') = S(u). To show L 1is replete,
assume the contrary. Then IR(c,L) - X # #. Consider any element of IR(o,L) - X, u .
Then S(u') = {u} and S(u) = @. Thus a contradiction has been reached. Consequently
L is replete.

B) Measure repleteness and support.

The purpose of the following example is to show that the condition "there exists
an element of MR(o,L), v , such that S(v) # @" is not sufficient for L to be
measure replete.

Example. Assume L 1is not compact. Then IR(L) - X # @.

@) Consider any element of IR(L) - X, u , and any element of X, x. Then, con-
sider u + u and denote it by v. Since u € IR(L) and u, € IR(L) (because L 1is
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disjunctive), v € MR(L). By the definition of support, S(v)= n{L e L/v(L) = v(X)}.
Consider any element of L, L , such that v(L) = v(X). Then v(L) = v(X) = n(x) +ux(x)
=1+ 1=2. Consequently u(L) + ux(L) = 2. Hence ux(L) =1, and x € L. Conse-

quently x € S(v), and S(v) # 0.
Next, show Vv ¢ MR(T,L). Assume Vv € MR(T,L). Then, since w =V - W ., U €

MR(t,l) . Consequently u e IR(T,l). Since L 1is separating and disjunctive,
IR(t,L) = X. Consequently u € X. Thus a contradiction has been reached. Consequent-
ly v ¢ MR(t,L).

8) Assume L 1is not replete. Then IR(c,L) # X. Consider any element of IR(o,L)
- X, u , any element of X, x , and v (as in part a) . Then v € MR(o,L), SM) # @,
and v ¢ MR(t,l) (see part a)). Consequently v € MR(s,L), S(V) # @, but L 1is not
measure replete.

Observation. For every element of IR(c,l), v , if S(v) # @, then v e IR(t,L).

We will give a necessary and sufficient condition for measure repleteness in terms
of support.

LEMMA 3.2. Consider any set X and any lattice of subsets of X, L. Consider
any element of MR(L), u , and the measures 7 on o(W(L)) and f on o(tW(L)). (Re-
call §i is 6&W(L)-regular and fl is tW(L)-regular.) Next, consider any subset of
IR(L), H. Then

Case 1: There exists a countably additive measure on o(W(L)), p, such that
0<p < ﬁ, p is 6W(L)-regular, and o*(H) = p(IR(L)) = a*(H).

Case 2: There exists a countably additive measure on o(tW(L)), p , such that
0<p <fl,p is tW(l)-regular, and o) =p (IR(L)) = n* ).

(See [5], Lemma 4.1.)

THEOREM 3.3. The following statements are equivalent:

1. L is measure replete.

2. TFor every element of MR(g,L) - {0}, u, S(u) # 0.

Ptoof. a) Assume 1, and show 2. Consider any element of MR(o,l) - {0}, u .
Singe L 1is measure replete , MR(¢,L) ¢ MR(t,l). Consequently u € MR(t,L) - {0}.
Hence S(u) # 0.

B8) Conversely, assume 2, and show 1. Note to show L 1is measure replete, it suf-
fices to show MR(o,L) < MR(t,L). Consider any element of MR(g,L) - {0}, u . Assume
u ¢ MR(t,L). Then, by Theorem 1.1, part 2, there exists an element of tW(L), K , such
that K ¢ IR(L) - X and fI(K) # 0. Consider any such K. Then, by Lemma 3.2, Case 2,
there exists a countably additive measure on o(tW(L)), p , such that 0 <p < {i, p 1is
tW(l)-regular, and p*(K) = p (IR(L))
"IA(w(L)) and the element of M(L), v , which is such that plA(w(L)) =9v. Note

fi*(K). Consider any such p. Now, consider

°lA(w(L)) € MR(W(L)). Consequently v e MR(L).
Show v € MR(o,L). Use Theorem 1.1, part 1. Consider any sequence in L, < Ly >

such that < L, > is decreasing and gw(Li) c IR(L) - X, and show G(?W(Li)) = 0. Note

i
nw(Li) € o(W(L)) and, since p| = 3 (by Uniqueness of Extension), v(nW(L,)) =
i olwlL)) Al

~

p(gW(Li)). Since p < {i, plc(W(L)) < ﬂlo(w(L))’ Further, note ﬁlo(w(L))= u, by

Uniqueness of Extension. Consequently plc(w(L)) < u. Consequently G(QW(Li)) =
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p(nw(Li)) < ﬁ(nW(Li)). Since u € MR(o,L), by Theorem 1.1, part 1, ﬁ(gw(Li)) = 0.
i i
Consequently G(nW(Li)) = 0. Then, by Theorem 1.1, part 1, Vv € MR(o,L). Moreover,
i

since v(X) = V(IR(L)) = p (IR(L)) = a*(K) = 1I(K) # 0, v # 0. Then, by the assumption,
s(v) # 8.
Further, note S(v) = S(¥) n X. Also, since plA(w(L)) =9V and W(L) separates

*
twW(L), 9. Consequently S(v) = S(p) n X. Moreover, since p (K) =

PlacencLy) =
o (IR(L)) and p*(K) = p(K), 'S(p)c K. Hence, since K < IR(L) - X, S(p) n X = @. Con-
sequently S(v) = @. Thus a contradiction has been reached. Consequently u € MR(t,L).
Hence MR(c,L) © MR(t,L). Consequently L is measure replete.

Remark. This theorem generalizes [8], Theorem 2.2, where it is assumed that L
is &.

Examples. (1). Consider any topological space X such that X is T3;i and let

L = Z. Then, by Theorem 3.3, (or by [8], Theorem 2.2), X 1is measure compact iff for
every element of MR(c,2) - {0} u, S@) # 0.
(2). Consider any topological space X such that X is T, and let L = F.

Then, by Theorem 3.3, (or by [8], Theorem 2.2), X 1is Borel measure compact iff for every
element of MR(o,F) - {0}, u , S # 0.

(3). Consider any topological space X such that X is 'I‘1 and O-dimensional

and let L = C. Then, by Theorem 3.3, X is clopen measure replete iff for every ele-
ment of MR(0,C) - {0}, u , S(u) # 0.

y) Other properties of support.

Theorem 3.4. The following statements are equivalent:

1. L is regular.

2. For every two elements of M(L), w , v , if u <v on L and u(X) = v(X),
then S(u) = S(v).

Proof. o) Assumel, and show 2. Consider any two elements of M(L), w, v, such
that y <von L and u(X) = v(X). Since u =v on L and p(X) = v(X), S(v) <
S(u). Assume S(u) # S(v). Then there exists an element of S(u), x , such that
x ¢ S(v). Consider any such x. Then, since S(v) = n{L € L/v(L) = v(X)}, there ex-
ists an element of L, L , such that v(L) = v(X) and x ¢ L. Consider any such L.
Then, since L is regular, there exist two elements of L, A , B , such that x € A'
and L cB' and A' n B' = @. Consider any such A, B. Then L c B' ¢ A, Conse-
quently p(X) = v(X) = v(L) < v(B'") < u(B') < u(A) < p(X). Consequently A € L and
u(A) = u(X). Hence, since x € S(u), x € A. Thus a contradiction has been reached.
Consequently S(u) = S(v).

B) Conversely, assume 2, and show 1. Note, by the assumption, for every two ele-
ments of I(L), w, v, if w<v on L, then S() = S(v). Then, L 1is regular.
(Proof known, see, e.g.,[ 6].)

Remark 1. The condition "L 1is separating and disjunctive' was not needed in the
proof.

Remark 2. This theorem generalizes a known result on 0 - 1 measures.

Observation 1. Assume [ 1is regular. Consider any element of M(L), u. Then

there exists an element of MR(L), v , such that p £ v on L and u(X) = v(X). (See
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e.g.,[10].) Consider any such v. Then, since L is regular, by Theorem 3.4, S(u) =
Sw).

The significance of this observation is this: Given that L 1is regular, in
checking facts about the support of an element of M(L), u , it is permissible to
assume p € MR(L).

Observation 2. Assume L 1is regular and countably compact. Consider any ele-
ment of M(L), n. Then, consider any element of MR(L), v , such that u <v on L
and p(X) = v(X). Since L is countably compact, MR(L) = MR(o,L). Consequently
v € MR(o,L). Moreover, since L 1is regular, S(u) = S(v).

The significance of this observation is this: Given that L is regular and
countably compact, in checking facts about the support of an element of M(o*,L), w,it
is permissible to assume u € MR(o,L).

Example. Consider any topological space X such that X 1is regular and count-
ably compact and let L = F. Then, by Observation 2, for every elemeﬁt of M(c*,F),

u , there exists an element of MR(c,F), thatis, a Borel measure, v , such that u v
on F and p(X) =v(X) and S@) = S(v).

Observation 3. Assume L is regular, normal, and countably paracompact. Con-
sider any element of M(o*,L), u. Then, since L is normal and countably paracom-
pact, there exists an element of MR(o,L), v , such that u <v on L and uX) =
v(X). (See [8], Theorem 4.1) Consider any such v. Then, since L is regular, by
Theorem 3.4, S(u) = S(v).

The significance of this observation is this: Given that L 1is regular, normal,
and countably paracompact, in checking facts about the support of an element of
M(o*,L), p , it is permissible to assume p € MR(o,l).

Example. Consider any topological space X such that X is T3;5 and let L = Z.

Then, by Observation 3, for every element of M(c*,2), u , there exists an element of
MR(0,Z), that is, a Baire measure, v , such that p <v on Z and puX) =v(X) and
S(u) = s).

Observation 4. Consider any topological space X such that X is T3% and

pseudocompact and let L = F. Now, consider any element of M(F), p. Note p € M(0).
Consider any element of MR(0), v , such that p < v on 0 and p(X) = v(X). Then
v £p on F.

Next, show v € M(c*,F). Assume Vv ¢ M(c*,F). Then there exists a sequence in F,

< F >, such that < F_ > is decreasing and 1lim F_ = @, but 1lim v(F_ ) # 0. Consider
n ’ n n 0 n n

any such < Fn >, Since < Fn > 1s decreasing and I%m Fn =@, < Fn' > is 1increas-

ing and UF; X. Since X 1is pseudocompact, there exists a value of n, ng, such
n

n

K21
— Pl

increasing. Consequently, F;O =X and for every n, if n 2 ng, then Fn = X. Now,

F! = X. Consider any such nj. Since < F; > 1is increasing, < f; > is

that

note since 1%m v(Fn) 40, l%m v(Fn) > 0., Set l%mV(Fn) = ¢. Then for every n, since

v € MR((), there exists an element of o, Gn’ such that Gu c Fn and v(Gn) > g; con—
—_— —_—1 —_1 .
sider any such G_; then G < F_; hence G, > Fn'; consequently G; > Gn > Fl hence
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G; > ?; . Consequently for every n, if n 2 ng, then G; > F;= X. Hence for every n,

if n 2 n,

M(c*,1).

Finally, note since X 1is completely regular, it is regular; equivalently, F is

, then Gn = . Thus a contradiction has been reached. Consequently Vv €

regular. Then, by Theorem 3.4, S(p) = S(v).

The significance of this observation is this: Given that X is T3% and pseudo-

compact, in checking facts about the support of an element of M(F), p, it is permissi-
ble to assume p € M(c*,F).
The purpose of the following discussion is to illustrate the importance of consid-
ering o-smoothness with respect to lattices.
Lemma 3.3. If L is complement generated, then M(o*,L) c MR(L).
Proof. Assume L 1is complement generated. Consider any element of M(c*,L"), u.
Note to show u € MR(L), it suffices to show for every element of L, L , u(L) =
inf {u(i')/i e L and I'> L}. Consider the function p which is such that Dp =L

and for every element of L, L, p(L) = inf{u(L'WL ¢ L and L' > L}. Show for every
element of L, L, p(L) = u(L). Consider any element of L, L. Note u(L) < p(L). Now,
show p(L) < u(L). Since L€L and L is complement generated, there exists a sequence in

L, < Ln >, such that L = gL;. Consider any such < Ln >, Without loss of generality,

assume < L; > is decreasing. Note for every n, u(L;) = u(L; nlL)+ u(L; nL").

Since L =nL', L' n L = L. Next, consider <L' n L' >. Note < L' nlL' > is in L'
nn’ n n n

and since < Lé > is decreasing, < L; n L' > is decreasing and since L RLA,
5 ' vy — ' 1y — ' v * 1 ' "y -
1r11m(Ln nL"') = H(Ln n L") (QLn) nlL @. Then, since u € M(c™,L'), lgm u(Ln n L")
: 'y = 14 ' : ' " = = -
0. Consequently l%m u(Ln) = l%m u(Ln n L)+ lﬁm u(Ln nL'") pu(L) + 0 = p(L). Conse
quently p(L) < u(L). Then p(L) = u(L). Thus u(L) = inf{u(L')/L e L and L' > L}.
Consequently u ¢ MR(L). Hence M(o*, L") < MR(L).

Lemma 3.4. If L is countably paracompact, them M(c*,L') < M(c*,L).
Proof. Assume L is countably paracompact. Consider any element of M(c*,L'), u.

To show u € M(c*,L), consider any sequence in L, < Ln >, such that < Ln > 1is de-

creasing and 1lim L = @, and show 1im u(L_) = 0. Since <L > is in L and <L_ >
n o n n n

is decreasing and lgm Ln =9 and L 1is countably paracompact, there exists a sequence

in L[, < Ln >-, such that for every n, Ln c ; and <L;> is decreasing and l%m in' =

P#. Consider any such < in >. Then, since u € M(c*,L"), I%m u(ié) = 0. Consequent-
1y I%m u(Ln) = 0. Thus u e M(c*,L). Hence M(c*,L') <« M(c*,L).

THEOREM 3.5. If L 1is complement generated, then M(c*,L') = MR(o,L).

Proof. Assume L is complement generated. Note in general, MR(o,L) < M(c*,L').
Now, show M(¢*,L') < MR(o,L).

@) Since L 1is complement generated, by Lemma 3.3, M(c*,L') c MR(L).

B) Since L is complement generated, L is countably paracompact. Hence, by
Lemma 3.4, M(c*,L') c M(o*,L).
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Y) Consequently M(c*,L'} € MR(L) n M(c*,L) = MR(o,L). Thus M(c*,L') = MR(o,L).
Observation. Note M(o,l) < M(c*,L') = MR(o,L) < M(o,L). Hence M(o,L) = MR(o,L).
This result generalizes the following well-known result: Consider any topological space

X such that X is T and let L = Z. Then M(0,2) = MR(0,2); expressed otherwise:

3%
every Baire measure is regular.

Remark. Note the condition 'L is separating and disjunctive'" was not needed in
the proof.

Finally, we will consider the question of when the support of ameasure is Lindeldf.

Proposition 3.1. (a) If L 1is Lindelof (compact), then for every element of M(L),
b, S(u) 1is Lindeldf (comnpact).

g) If L is &, then for every element of MR(t,L), u , u*(S(u)) = u(X).

Y) For every element of MR(o,L), u , if S(u) is Lindeldf, then for every element
of MR(tl), v , if le{L] =y, then v(S@)) = u*(S()).

(Proof omitted.)

Remark. The condition "L is separating and disjunctive' was not needed in the
proof.

Definition. L 1is paracompact iff L is regular and for every subset

of L, {Au; a € A}, if U{A&; a € A} = X, then there exists a subset of L, {Ba;

a € A}, such that for every a, B& c A& and U{B&; a € A} = X and for every element of

X, x , there exists an element of L, L , such that x € L' and {a € A/L' n B& # ¢}

is finite.

THEOREM 3.6. If tlL is paracompact, then for every element of MR(t,L), u , S(u)
is Lindeldf.

Proof. Assume tl 1is paracompact. Consider any element of MR(t,L) - {0}, u.

Then S(u) # @#. Consider any subset of (tlL)', {Oa; a € A}, such that S(u) c U{Ou;

a € A}, Note S(u) € tL . Hence, since tL 1is paracompact, S(u) n tL 1is paracompact.
Then there exists an open refinement of {Ou; a € A}, G, such that S(u) < uG and

there exists a sequence of subsets of G, < Gn >, such that G = an and for every n,
Gn is discrete. Consider any such G and any such < Gn >, Note to show there exists
a subset of A, A* , such that S(u) c U{Oa; « € A*¥} and A* is countable, it suffices
to show that for every n, Gn is countable. To do this, proceed as follows:

Since L 1is separating and disjunctive, and u € MR(t,L), by [5], Theorem 2.5,
there exists an element of MR(t,tl), v , such that vIA(L) =p and v 1is unique.

Observation. For every element of L, L , if S(u) n L' # @, then v(S(u) n L')>0.
(Proof omitted.) Since S(u) € uG and S(u) # @, without loss of generality assume
for every element of G, 0, S(u) n O # 0.

Now, consider any n. Since Gn is discrete, Gn is disjoint; hence {S(u)n 03
0 e Gn} is disjoint. Therefore to show Gn is countable, it suffices to show
{S(x) n0; 0 ¢ Gn} is countable; consider any element of Gn’ 0; then, by assumption,

S(u) n O # P; consider any element of S(u) n O, x; then, there exists an element of L,
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such that x € L' ¢ 0; consider any such f; then, by the observation, v(s) nL")
is countable;

L,
> 0; consequently v(S(u) n 0) > 0. Therefore {S(u) n O0; O € Gn}

(proof omitted;) consequently Gn is countable.

Whence S(u) is Lindeldf.
Examples. (1l). Consider any topological space X such that X is T1 and para-

compact. (Note X is T3%). Let L = Z. Then by Theorem 3.6, for every element of

MR(t,Z), u , S(u) is Lindel8f. (This result is known.)

(2). Consider any topological space X such that X is T1 and paracompact and

L = F, Then, by Theorem 3.6, for every element of MR(t,F), u , S(u) is Lindeldf.
(3). Consider any topological space X such that X 1is ’I‘l and O-dimensional

and paracompact. Let L = C. Then, by Theorem 3.6, for every element of MR(t,C); u ,
S(u) 1is Lindeldf.
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